diff options
author | xuri <xuri.me@gmail.com> | 2022-03-21 00:02:42 +0800 |
---|---|---|
committer | xuri <xuri.me@gmail.com> | 2022-03-21 00:02:42 +0800 |
commit | 067c5d564383aa56f91fc0b9250352a5542c1e6f (patch) | |
tree | 2426c3714a70f2ef368ddcfee2dd99a1c650b93d /calc.go | |
parent | 49424b0eb3e35201fd7f922a1ad80b6c4d4976c4 (diff) |
This closes #1185, fix formula function calculation result precision issue on arm64
* New formula functions: BINOM.DIST.RANGE and BINOM.INV
* Fix complex number calculation result precision issue
Diffstat (limited to 'calc.go')
-rw-r--r-- | calc.go | 257 |
1 files changed, 202 insertions, 55 deletions
@@ -342,6 +342,8 @@ type formulaFuncs struct { // BIN2OCT // BINOMDIST // BINOM.DIST +// BINOM.DIST.RANGE +// BINOM.INV // BITAND // BITLSHIFT // BITOR @@ -1985,13 +1987,27 @@ func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } - return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix)) + return newStringFormulaArg(cmplx2str(complex(real.Number, i.Number), suffix)) } // cmplx2str replace complex number string characters. -func cmplx2str(c, suffix string) string { - if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" { - return "0" +func cmplx2str(num complex128, suffix string) string { + c := fmt.Sprint(num) + realPart, imagPart := fmt.Sprint(real(num)), fmt.Sprint(imag(num)) + isNum, i := isNumeric(realPart) + if isNum && i > 15 { + realPart = roundPrecision(realPart, -1) + } + isNum, i = isNumeric(imagPart) + if isNum && i > 15 { + imagPart = roundPrecision(imagPart, -1) + } + c = realPart + if imag(num) > 0 { + c += "+" + } + if imag(num) != 0 { + c += imagPart + "i" } c = strings.TrimPrefix(c, "(") c = strings.TrimPrefix(c, "+0+") @@ -2325,7 +2341,8 @@ func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2341,7 +2358,8 @@ func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2357,7 +2375,8 @@ func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2373,11 +2392,12 @@ func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Conj(inumber), value[len(value)-1:])) } // IMCOS function returns the cosine of a supplied complex number. The syntax @@ -2389,11 +2409,12 @@ func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cos(inumber), value[len(value)-1:])) } // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax @@ -2405,11 +2426,12 @@ func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cosh(inumber), value[len(value)-1:])) } // IMCOT function returns the cotangent of a supplied complex number. The syntax @@ -2421,11 +2443,12 @@ func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cot(inumber), value[len(value)-1:])) } // IMCSC function returns the cosecant of a supplied complex number. The syntax @@ -2437,7 +2460,8 @@ func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2445,7 +2469,7 @@ func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMCSCH function returns the hyperbolic cosecant of a supplied complex @@ -2457,7 +2481,8 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2465,7 +2490,7 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMDIV function calculates the quotient of two complex numbers (i.e. divides @@ -2477,7 +2502,8 @@ func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments") } - inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber1, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2489,7 +2515,7 @@ func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMEXP function returns the exponential of a supplied complex number. The @@ -2501,11 +2527,12 @@ func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Exp(inumber), value[len(value)-1:])) } // IMLN function returns the natural logarithm of a supplied complex number. @@ -2517,7 +2544,8 @@ func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2525,7 +2553,7 @@ func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMLOG10 function returns the common (base 10) logarithm of a supplied @@ -2537,7 +2565,8 @@ func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2545,7 +2574,7 @@ func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMLOG2 function calculates the base 2 logarithm of a supplied complex @@ -2557,7 +2586,8 @@ func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2565,7 +2595,7 @@ func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i")) + return newStringFormulaArg(cmplx2str(num/cmplx.Log(2), value[len(value)-1:])) } // IMPOWER function returns a supplied complex number, raised to a given @@ -2577,7 +2607,8 @@ func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2592,7 +2623,7 @@ func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMPRODUCT function calculates the product of two or more complex numbers. @@ -2631,7 +2662,7 @@ func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg { } } } - return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i")) + return newStringFormulaArg(cmplx2str(product, "i")) } // IMREAL function returns the real coefficient of a supplied complex number. @@ -2643,11 +2674,12 @@ func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i")) + return newStringFormulaArg(fmt.Sprint(real(inumber))) } // IMSEC function returns the secant of a supplied complex number. The syntax @@ -2659,11 +2691,12 @@ func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i")) + return newStringFormulaArg(cmplx2str(1/cmplx.Cos(inumber), value[len(value)-1:])) } // IMSECH function returns the hyperbolic secant of a supplied complex number. @@ -2675,11 +2708,12 @@ func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(1/cmplx.Cosh(inumber), value[len(value)-1:])) } // IMSIN function returns the Sine of a supplied complex number. The syntax of @@ -2691,11 +2725,12 @@ func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sin(inumber), value[len(value)-1:])) } // IMSINH function returns the hyperbolic sine of a supplied complex number. @@ -2707,11 +2742,12 @@ func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sinh(inumber), value[len(value)-1:])) } // IMSQRT function returns the square root of a supplied complex number. The @@ -2723,11 +2759,12 @@ func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sqrt(inumber), value[len(value)-1:])) } // IMSUB function calculates the difference between two complex numbers @@ -2748,7 +2785,7 @@ func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg { if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i")) + return newStringFormulaArg(cmplx2str(i1-i2, "i")) } // IMSUM function calculates the sum of two or more complex numbers. The @@ -2769,7 +2806,7 @@ func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg { } result += num } - return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i")) + return newStringFormulaArg(cmplx2str(result, "i")) } // IMTAN function returns the tangent of a supplied complex number. The syntax @@ -2781,11 +2818,12 @@ func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Tan(inumber), value[len(value)-1:])) } // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2) @@ -5652,7 +5690,8 @@ func logBeta(a, b float64) float64 { } if p >= 10.0 { corr = lgammacor(p) + lgammacor(q) - lgammacor(p+q) - return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + q*logrelerr(-p/(p+q)) + f1 := q * logrelerr(-p/(p+q)) + return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + math.Nextafter(f1, f1) } if q >= 10 { corr = lgammacor(q) - lgammacor(p+q) @@ -5970,6 +6009,108 @@ func (fn *formulaFuncs) BINOMDIST(argsList *list.List) formulaArg { return newNumberFormulaArg(binomdist(s.Number, trials.Number, probability.Number)) } +// BINOMdotDISTdotRANGE function returns the Binomial Distribution probability +// for the number of successes from a specified number of trials falling into +// a specified range. +// +// BINOM.DIST.RANGE(trials,probability_s,number_s,[number_s2]) +// +func (fn *formulaFuncs) BINOMdotDISTdotRANGE(argsList *list.List) formulaArg { + if argsList.Len() < 3 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.DIST.RANGE requires at least 3 arguments") + } + if argsList.Len() > 4 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.DIST.RANGE requires at most 4 arguments") + } + trials := argsList.Front().Value.(formulaArg).ToNumber() + if trials.Type != ArgNumber { + return trials + } + probability := argsList.Front().Next().Value.(formulaArg).ToNumber() + if probability.Type != ArgNumber { + return probability + } + if probability.Number < 0 || probability.Number > 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + num1 := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() + if num1.Type != ArgNumber { + return num1 + } + if num1.Number < 0 || num1.Number > trials.Number { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + num2 := num1 + if argsList.Len() > 3 { + if num2 = argsList.Back().Value.(formulaArg).ToNumber(); num2.Type != ArgNumber { + return num2 + } + } + if num2.Number < 0 || num2.Number > trials.Number { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + sumn := 0.0 + for i := num1.Number; i <= num2.Number; i++ { + sumn += binomdist(i, trials.Number, probability.Number) + } + return newNumberFormulaArg(sumn) +} + +// binominv implement inverse of the binomial distribution calcuation. +func binominv(n, p, alpha float64) float64 { + q, i, sum, max := 1-p, 0.0, 0.0, 0.0 + n = math.Floor(n) + if q > p { + factor := math.Pow(q, n) + sum = factor + for i = 0; i < n && sum < alpha; i++ { + factor *= (n - i) / (i + 1) * p / q + sum += factor + } + return i + } + factor := math.Pow(p, n) + sum, max = 1-factor, n + for i = 0; i < max && sum >= alpha; i++ { + factor *= (n - i) / (i + 1) * q / p + sum -= factor + } + return n - i +} + +// BINOMdotINV function returns the inverse of the Cumulative Binomial +// Distribution. The syntax of the function is: +// +// BINOM.INV(trials,probability_s,alpha) +// +func (fn *formulaFuncs) BINOMdotINV(argsList *list.List) formulaArg { + if argsList.Len() != 3 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.INV requires 3 numeric arguments") + } + trials := argsList.Front().Value.(formulaArg).ToNumber() + if trials.Type != ArgNumber { + return trials + } + if trials.Number < 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + probability := argsList.Front().Next().Value.(formulaArg).ToNumber() + if probability.Type != ArgNumber { + return probability + } + if probability.Number <= 0 || probability.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + alpha := argsList.Back().Value.(formulaArg).ToNumber() + if alpha.Type != ArgNumber { + return alpha + } + if alpha.Number <= 0 || alpha.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + return newNumberFormulaArg(binominv(trials.Number, probability.Number, alpha.Number)) +} + // CHIDIST function calculates the right-tailed probability of the chi-square // distribution. The syntax of the function is: // @@ -7143,8 +7284,12 @@ func norminv(p float64) (float64, error) { // Rational approximation for central region. q := p - 0.5 r := q * q - return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q / - (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil + f1 := ((((a[1]*r+a[2])*r+a[3])*r+a[4])*r + a[5]) * r + f2 := (b[1]*r + b[2]) * r + f3 := ((math.Nextafter(f2, f2)+b[3])*r + b[4]) * r + f4 := (math.Nextafter(f3, f3) + b[5]) * r + return (math.Nextafter(f1, f1) + a[6]) * q / + (math.Nextafter(f4, f4) + 1), nil } else if pHigh < p && p < 1 { // Rational approximation for upper region. q := math.Sqrt(-2 * math.Log(1-p)) @@ -7506,7 +7651,7 @@ func (fn *formulaFuncs) PERCENTILEdotEXC(argsList *list.List) formulaArg { idx := k.Number * (float64(cnt) + 1) base := math.Floor(idx) next := base - 1 - proportion := idx - base + proportion := math.Nextafter(idx, idx) - base return newNumberFormulaArg(numbers[int(next)] + ((numbers[int(base)] - numbers[int(next)]) * proportion)) } @@ -7559,7 +7704,7 @@ func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg { return newNumberFormulaArg(numbers[int(idx)]) } next := base + 1 - proportion := idx - base + proportion := math.Nextafter(idx, idx) - base return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion)) } @@ -14052,7 +14197,8 @@ func (fn *formulaFuncs) yield(settlement, maturity, rate, pr, redemption, freque yield2 = yieldN price2 = priceN } - yieldN.Number = yield2.Number - (yield2.Number-yield1.Number)*((pr.Number-price2.Number)/(price1.Number-price2.Number)) + f1 := (yield2.Number - yield1.Number) * ((pr.Number - price2.Number) / (price1.Number - price2.Number)) + yieldN.Number = yield2.Number - math.Nextafter(f1, f1) } } return yieldN @@ -14202,7 +14348,8 @@ func (fn *formulaFuncs) YIELDMAT(argsList *list.List) formulaArg { } dis := yearFrac(issue.Number, settlement.Number, int(basis.Number)) dsm := yearFrac(settlement.Number, maturity.Number, int(basis.Number)) - result := 1 + dim.Number*rate.Number + f1 := dim.Number * rate.Number + result := 1 + math.Nextafter(f1, f1) result /= pr.Number/100 + dis.Number*rate.Number result-- result /= dsm.Number |