diff options
-rw-r--r-- | calc.go | 257 | ||||
-rw-r--r-- | calc_test.go | 123 |
2 files changed, 282 insertions, 98 deletions
@@ -342,6 +342,8 @@ type formulaFuncs struct { // BIN2OCT // BINOMDIST // BINOM.DIST +// BINOM.DIST.RANGE +// BINOM.INV // BITAND // BITLSHIFT // BITOR @@ -1985,13 +1987,27 @@ func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } - return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix)) + return newStringFormulaArg(cmplx2str(complex(real.Number, i.Number), suffix)) } // cmplx2str replace complex number string characters. -func cmplx2str(c, suffix string) string { - if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" { - return "0" +func cmplx2str(num complex128, suffix string) string { + c := fmt.Sprint(num) + realPart, imagPart := fmt.Sprint(real(num)), fmt.Sprint(imag(num)) + isNum, i := isNumeric(realPart) + if isNum && i > 15 { + realPart = roundPrecision(realPart, -1) + } + isNum, i = isNumeric(imagPart) + if isNum && i > 15 { + imagPart = roundPrecision(imagPart, -1) + } + c = realPart + if imag(num) > 0 { + c += "+" + } + if imag(num) != 0 { + c += imagPart + "i" } c = strings.TrimPrefix(c, "(") c = strings.TrimPrefix(c, "+0+") @@ -2325,7 +2341,8 @@ func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2341,7 +2358,8 @@ func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2357,7 +2375,8 @@ func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2373,11 +2392,12 @@ func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Conj(inumber), value[len(value)-1:])) } // IMCOS function returns the cosine of a supplied complex number. The syntax @@ -2389,11 +2409,12 @@ func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cos(inumber), value[len(value)-1:])) } // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax @@ -2405,11 +2426,12 @@ func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cosh(inumber), value[len(value)-1:])) } // IMCOT function returns the cotangent of a supplied complex number. The syntax @@ -2421,11 +2443,12 @@ func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Cot(inumber), value[len(value)-1:])) } // IMCSC function returns the cosecant of a supplied complex number. The syntax @@ -2437,7 +2460,8 @@ func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2445,7 +2469,7 @@ func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMCSCH function returns the hyperbolic cosecant of a supplied complex @@ -2457,7 +2481,8 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2465,7 +2490,7 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMDIV function calculates the quotient of two complex numbers (i.e. divides @@ -2477,7 +2502,8 @@ func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments") } - inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber1, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2489,7 +2515,7 @@ func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMEXP function returns the exponential of a supplied complex number. The @@ -2501,11 +2527,12 @@ func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Exp(inumber), value[len(value)-1:])) } // IMLN function returns the natural logarithm of a supplied complex number. @@ -2517,7 +2544,8 @@ func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2525,7 +2553,7 @@ func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMLOG10 function returns the common (base 10) logarithm of a supplied @@ -2537,7 +2565,8 @@ func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2545,7 +2574,7 @@ func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMLOG2 function calculates the base 2 logarithm of a supplied complex @@ -2557,7 +2586,8 @@ func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2565,7 +2595,7 @@ func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i")) + return newStringFormulaArg(cmplx2str(num/cmplx.Log(2), value[len(value)-1:])) } // IMPOWER function returns a supplied complex number, raised to a given @@ -2577,7 +2607,8 @@ func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } @@ -2592,7 +2623,7 @@ func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg { if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) + return newStringFormulaArg(cmplx2str(num, value[len(value)-1:])) } // IMPRODUCT function calculates the product of two or more complex numbers. @@ -2631,7 +2662,7 @@ func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg { } } } - return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i")) + return newStringFormulaArg(cmplx2str(product, "i")) } // IMREAL function returns the real coefficient of a supplied complex number. @@ -2643,11 +2674,12 @@ func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i")) + return newStringFormulaArg(fmt.Sprint(real(inumber))) } // IMSEC function returns the secant of a supplied complex number. The syntax @@ -2659,11 +2691,12 @@ func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i")) + return newStringFormulaArg(cmplx2str(1/cmplx.Cos(inumber), value[len(value)-1:])) } // IMSECH function returns the hyperbolic secant of a supplied complex number. @@ -2675,11 +2708,12 @@ func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(1/cmplx.Cosh(inumber), value[len(value)-1:])) } // IMSIN function returns the Sine of a supplied complex number. The syntax of @@ -2691,11 +2725,12 @@ func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sin(inumber), value[len(value)-1:])) } // IMSINH function returns the hyperbolic sine of a supplied complex number. @@ -2707,11 +2742,12 @@ func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sinh(inumber), value[len(value)-1:])) } // IMSQRT function returns the square root of a supplied complex number. The @@ -2723,11 +2759,12 @@ func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Sqrt(inumber), value[len(value)-1:])) } // IMSUB function calculates the difference between two complex numbers @@ -2748,7 +2785,7 @@ func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg { if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i")) + return newStringFormulaArg(cmplx2str(i1-i2, "i")) } // IMSUM function calculates the sum of two or more complex numbers. The @@ -2769,7 +2806,7 @@ func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg { } result += num } - return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i")) + return newStringFormulaArg(cmplx2str(result, "i")) } // IMTAN function returns the tangent of a supplied complex number. The syntax @@ -2781,11 +2818,12 @@ func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument") } - inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) + value := argsList.Front().Value.(formulaArg).Value() + inumber, err := strconv.ParseComplex(str2cmplx(value), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } - return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i")) + return newStringFormulaArg(cmplx2str(cmplx.Tan(inumber), value[len(value)-1:])) } // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2) @@ -5652,7 +5690,8 @@ func logBeta(a, b float64) float64 { } if p >= 10.0 { corr = lgammacor(p) + lgammacor(q) - lgammacor(p+q) - return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + q*logrelerr(-p/(p+q)) + f1 := q * logrelerr(-p/(p+q)) + return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + math.Nextafter(f1, f1) } if q >= 10 { corr = lgammacor(q) - lgammacor(p+q) @@ -5970,6 +6009,108 @@ func (fn *formulaFuncs) BINOMDIST(argsList *list.List) formulaArg { return newNumberFormulaArg(binomdist(s.Number, trials.Number, probability.Number)) } +// BINOMdotDISTdotRANGE function returns the Binomial Distribution probability +// for the number of successes from a specified number of trials falling into +// a specified range. +// +// BINOM.DIST.RANGE(trials,probability_s,number_s,[number_s2]) +// +func (fn *formulaFuncs) BINOMdotDISTdotRANGE(argsList *list.List) formulaArg { + if argsList.Len() < 3 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.DIST.RANGE requires at least 3 arguments") + } + if argsList.Len() > 4 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.DIST.RANGE requires at most 4 arguments") + } + trials := argsList.Front().Value.(formulaArg).ToNumber() + if trials.Type != ArgNumber { + return trials + } + probability := argsList.Front().Next().Value.(formulaArg).ToNumber() + if probability.Type != ArgNumber { + return probability + } + if probability.Number < 0 || probability.Number > 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + num1 := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() + if num1.Type != ArgNumber { + return num1 + } + if num1.Number < 0 || num1.Number > trials.Number { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + num2 := num1 + if argsList.Len() > 3 { + if num2 = argsList.Back().Value.(formulaArg).ToNumber(); num2.Type != ArgNumber { + return num2 + } + } + if num2.Number < 0 || num2.Number > trials.Number { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + sumn := 0.0 + for i := num1.Number; i <= num2.Number; i++ { + sumn += binomdist(i, trials.Number, probability.Number) + } + return newNumberFormulaArg(sumn) +} + +// binominv implement inverse of the binomial distribution calcuation. +func binominv(n, p, alpha float64) float64 { + q, i, sum, max := 1-p, 0.0, 0.0, 0.0 + n = math.Floor(n) + if q > p { + factor := math.Pow(q, n) + sum = factor + for i = 0; i < n && sum < alpha; i++ { + factor *= (n - i) / (i + 1) * p / q + sum += factor + } + return i + } + factor := math.Pow(p, n) + sum, max = 1-factor, n + for i = 0; i < max && sum >= alpha; i++ { + factor *= (n - i) / (i + 1) * q / p + sum -= factor + } + return n - i +} + +// BINOMdotINV function returns the inverse of the Cumulative Binomial +// Distribution. The syntax of the function is: +// +// BINOM.INV(trials,probability_s,alpha) +// +func (fn *formulaFuncs) BINOMdotINV(argsList *list.List) formulaArg { + if argsList.Len() != 3 { + return newErrorFormulaArg(formulaErrorVALUE, "BINOM.INV requires 3 numeric arguments") + } + trials := argsList.Front().Value.(formulaArg).ToNumber() + if trials.Type != ArgNumber { + return trials + } + if trials.Number < 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + probability := argsList.Front().Next().Value.(formulaArg).ToNumber() + if probability.Type != ArgNumber { + return probability + } + if probability.Number <= 0 || probability.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + alpha := argsList.Back().Value.(formulaArg).ToNumber() + if alpha.Type != ArgNumber { + return alpha + } + if alpha.Number <= 0 || alpha.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + return newNumberFormulaArg(binominv(trials.Number, probability.Number, alpha.Number)) +} + // CHIDIST function calculates the right-tailed probability of the chi-square // distribution. The syntax of the function is: // @@ -7143,8 +7284,12 @@ func norminv(p float64) (float64, error) { // Rational approximation for central region. q := p - 0.5 r := q * q - return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q / - (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil + f1 := ((((a[1]*r+a[2])*r+a[3])*r+a[4])*r + a[5]) * r + f2 := (b[1]*r + b[2]) * r + f3 := ((math.Nextafter(f2, f2)+b[3])*r + b[4]) * r + f4 := (math.Nextafter(f3, f3) + b[5]) * r + return (math.Nextafter(f1, f1) + a[6]) * q / + (math.Nextafter(f4, f4) + 1), nil } else if pHigh < p && p < 1 { // Rational approximation for upper region. q := math.Sqrt(-2 * math.Log(1-p)) @@ -7506,7 +7651,7 @@ func (fn *formulaFuncs) PERCENTILEdotEXC(argsList *list.List) formulaArg { idx := k.Number * (float64(cnt) + 1) base := math.Floor(idx) next := base - 1 - proportion := idx - base + proportion := math.Nextafter(idx, idx) - base return newNumberFormulaArg(numbers[int(next)] + ((numbers[int(base)] - numbers[int(next)]) * proportion)) } @@ -7559,7 +7704,7 @@ func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg { return newNumberFormulaArg(numbers[int(idx)]) } next := base + 1 - proportion := idx - base + proportion := math.Nextafter(idx, idx) - base return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion)) } @@ -14052,7 +14197,8 @@ func (fn *formulaFuncs) yield(settlement, maturity, rate, pr, redemption, freque yield2 = yieldN price2 = priceN } - yieldN.Number = yield2.Number - (yield2.Number-yield1.Number)*((pr.Number-price2.Number)/(price1.Number-price2.Number)) + f1 := (yield2.Number - yield1.Number) * ((pr.Number - price2.Number) / (price1.Number - price2.Number)) + yieldN.Number = yield2.Number - math.Nextafter(f1, f1) } } return yieldN @@ -14202,7 +14348,8 @@ func (fn *formulaFuncs) YIELDMAT(argsList *list.List) formulaArg { } dis := yearFrac(issue.Number, settlement.Number, int(basis.Number)) dsm := yearFrac(settlement.Number, maturity.Number, int(basis.Number)) - result := 1 + dim.Number*rate.Number + f1 := dim.Number * rate.Number + result := 1 + math.Nextafter(f1, f1) result /= pr.Number/100 + dis.Number*rate.Number result-- result /= dsm.Number diff --git a/calc_test.go b/calc_test.go index e0cd0d0..cb09d26 100644 --- a/calc_test.go +++ b/calc_test.go @@ -206,21 +206,21 @@ func TestCalcCellValue(t *testing.T) { // IMCOS "=IMCOS(0)": "1", "=IMCOS(0.5)": "0.877582561890373", - "=IMCOS(\"3+0.5i\")": "-1.1163412445261518-0.0735369737112366i", + "=IMCOS(\"3+0.5i\")": "-1.11634124452615-0.0735369737112366i", // IMCOSH "=IMCOSH(0.5)": "1.12762596520638", - "=IMCOSH(\"3+0.5i\")": "8.835204606500994+4.802825082743033i", - "=IMCOSH(\"2-i\")": "2.0327230070196656-3.0518977991518i", - "=IMCOSH(COMPLEX(1,-1))": "0.8337300251311491-0.9888977057628651i", + "=IMCOSH(\"3+0.5i\")": "8.83520460650099+4.80282508274303i", + "=IMCOSH(\"2-i\")": "2.03272300701967-3.0518977991518i", + "=IMCOSH(COMPLEX(1,-1))": "0.833730025131149-0.988897705762865i", // IMCOT "=IMCOT(0.5)": "1.83048772171245", - "=IMCOT(\"3+0.5i\")": "-0.4793455787473728-2.016092521506228i", - "=IMCOT(\"2-i\")": "-0.171383612909185+0.8213297974938518i", - "=IMCOT(COMPLEX(1,-1))": "0.21762156185440268+0.868014142895925i", + "=IMCOT(\"3+0.5i\")": "-0.479345578747373-2.01609252150623i", + "=IMCOT(\"2-i\")": "-0.171383612909185+0.821329797493852i", + "=IMCOT(COMPLEX(1,-1))": "0.217621561854403+0.868014142895925i", // IMCSC - "=IMCSC(\"j\")": "-0.8509181282393216i", + "=IMCSC(\"j\")": "-0.850918128239322j", // IMCSCH - "=IMCSCH(COMPLEX(1,-1))": "0.30393100162842646+0.6215180171704284i", + "=IMCSCH(COMPLEX(1,-1))": "0.303931001628426+0.621518017170428i", // IMDIV "=IMDIV(\"5+2i\",\"1+i\")": "3.5-1.5i", "=IMDIV(\"2+2i\",\"2+i\")": "1.2+0.4i", @@ -228,18 +228,18 @@ func TestCalcCellValue(t *testing.T) { // IMEXP "=IMEXP(0)": "1", "=IMEXP(0.5)": "1.64872127070013", - "=IMEXP(\"1-2i\")": "-1.1312043837568135-2.4717266720048183i", - "=IMEXP(COMPLEX(1,-1))": "1.4686939399158851-2.2873552871788423i", + "=IMEXP(\"1-2i\")": "-1.13120438375681-2.47172667200482i", + "=IMEXP(COMPLEX(1,-1))": "1.46869393991589-2.28735528717884i", // IMLN "=IMLN(0.5)": "-0.693147180559945", - "=IMLN(\"3+0.5i\")": "1.1123117757621668+0.16514867741462683i", - "=IMLN(\"2-i\")": "0.8047189562170503-0.4636476090008061i", - "=IMLN(COMPLEX(1,-1))": "0.3465735902799727-0.7853981633974483i", + "=IMLN(\"3+0.5i\")": "1.11231177576217+0.165148677414627i", + "=IMLN(\"2-i\")": "0.80471895621705-0.463647609000806i", + "=IMLN(COMPLEX(1,-1))": "0.346573590279973-0.785398163397448i", // IMLOG10 "=IMLOG10(0.5)": "-0.301029995663981", - "=IMLOG10(\"3+0.5i\")": "0.48307086636951624+0.07172315929479262i", - "=IMLOG10(\"2-i\")": "0.34948500216800943-0.20135959813668655i", - "=IMLOG10(COMPLEX(1,-1))": "0.1505149978319906-0.3410940884604603i", + "=IMLOG10(\"3+0.5i\")": "0.483070866369516+0.0717231592947926i", + "=IMLOG10(\"2-i\")": "0.349485002168009-0.201359598136687i", + "=IMLOG10(COMPLEX(1,-1))": "0.150514997831991-0.34109408846046i", // IMREAL "=IMREAL(\"5+2i\")": "5", "=IMREAL(\"2+2i\")": "2", @@ -248,31 +248,31 @@ func TestCalcCellValue(t *testing.T) { "=IMREAL(COMPLEX(4,1))": "4", // IMSEC "=IMSEC(0.5)": "1.13949392732455", - "=IMSEC(\"3+0.5i\")": "-0.8919131797403304+0.05875317818173977i", - "=IMSEC(\"2-i\")": "-0.4131493442669401-0.687527438655479i", - "=IMSEC(COMPLEX(1,-1))": "0.49833703055518686-0.5910838417210451i", + "=IMSEC(\"3+0.5i\")": "-0.89191317974033+0.0587531781817398i", + "=IMSEC(\"2-i\")": "-0.41314934426694-0.687527438655479i", + "=IMSEC(COMPLEX(1,-1))": "0.498337030555187-0.591083841721045i", // IMSECH "=IMSECH(0.5)": "0.886818883970074", - "=IMSECH(\"3+0.5i\")": "0.08736657796213027-0.047492549490160664i", - "=IMSECH(\"2-i\")": "0.1511762982655772+0.22697367539372157i", - "=IMSECH(COMPLEX(1,-1))": "0.49833703055518686+0.5910838417210451i", + "=IMSECH(\"3+0.5i\")": "0.0873665779621303-0.0474925494901607i", + "=IMSECH(\"2-i\")": "0.151176298265577+0.226973675393722i", + "=IMSECH(COMPLEX(1,-1))": "0.498337030555187+0.591083841721045i", // IMSIN "=IMSIN(0.5)": "0.479425538604203", - "=IMSIN(\"3+0.5i\")": "0.15913058529843999-0.5158804424525267i", - "=IMSIN(\"2-i\")": "1.4031192506220405+0.4890562590412937i", - "=IMSIN(COMPLEX(1,-1))": "1.2984575814159773-0.6349639147847361i", + "=IMSIN(\"3+0.5i\")": "0.15913058529844-0.515880442452527i", + "=IMSIN(\"2-i\")": "1.40311925062204+0.489056259041294i", + "=IMSIN(COMPLEX(1,-1))": "1.29845758141598-0.634963914784736i", // IMSINH "=IMSINH(-0)": "0", "=IMSINH(0.5)": "0.521095305493747", - "=IMSINH(\"3+0.5i\")": "8.791512343493714+4.82669427481082i", - "=IMSINH(\"2-i\")": "1.9596010414216063-3.165778513216168i", - "=IMSINH(COMPLEX(1,-1))": "0.6349639147847361-1.2984575814159773i", + "=IMSINH(\"3+0.5i\")": "8.79151234349371+4.82669427481082i", + "=IMSINH(\"2-i\")": "1.95960104142161-3.16577851321617i", + "=IMSINH(COMPLEX(1,-1))": "0.634963914784736-1.29845758141598i", // IMSQRT - "=IMSQRT(\"i\")": "0.7071067811865476+0.7071067811865476i", - "=IMSQRT(\"2-i\")": "1.455346690225355-0.34356074972251244i", - "=IMSQRT(\"5+2i\")": "2.27872385417085+0.4388421169022545i", + "=IMSQRT(\"i\")": "0.707106781186548+0.707106781186548i", + "=IMSQRT(\"2-i\")": "1.45534669022535-0.343560749722512i", + "=IMSQRT(\"5+2i\")": "2.27872385417085+0.438842116902254i", "=IMSQRT(6)": "2.44948974278318", - "=IMSQRT(\"-2-4i\")": "1.1117859405028423-1.7989074399478673i", + "=IMSQRT(\"-2-4i\")": "1.11178594050284-1.79890743994787i", // IMSUB "=IMSUB(\"5+i\",\"1+4i\")": "4-3i", "=IMSUB(\"9+2i\",6)": "3+2i", @@ -283,9 +283,9 @@ func TestCalcCellValue(t *testing.T) { // IMTAN "=IMTAN(-0)": "0", "=IMTAN(0.5)": "0.54630248984379", - "=IMTAN(\"3+0.5i\")": "-0.11162105077158344+0.46946999342588536i", - "=IMTAN(\"2-i\")": "-0.24345820118572523-1.16673625724092i", - "=IMTAN(COMPLEX(1,-1))": "0.2717525853195117-1.0839233273386948i", + "=IMTAN(\"3+0.5i\")": "-0.111621050771583+0.469469993425885i", + "=IMTAN(\"2-i\")": "-0.243458201185725-1.16673625724092i", + "=IMTAN(COMPLEX(1,-1))": "0.271752585319512-1.08392332733869i", // OCT2BIN "=OCT2BIN(\"5\")": "101", "=OCT2BIN(\"0000000001\")": "1", @@ -555,16 +555,16 @@ func TestCalcCellValue(t *testing.T) { "=LOG10(25)": "1.39794000867204", "=LOG10(LOG10(100))": "0.301029995663981", // IMLOG2 - "=IMLOG2(\"5+2i\")": "2.4289904975637864+0.5489546632866347i", - "=IMLOG2(\"2-i\")": "1.1609640474436813-0.6689021062254881i", + "=IMLOG2(\"5+2i\")": "2.42899049756379+0.548954663286635i", + "=IMLOG2(\"2-i\")": "1.16096404744368-0.668902106225488i", "=IMLOG2(6)": "2.58496250072116", - "=IMLOG2(\"3i\")": "1.584962500721156+2.266180070913597i", - "=IMLOG2(\"4+i\")": "2.04373142062517+0.3534295024167349i", + "=IMLOG2(\"3i\")": "1.58496250072116+2.2661800709136i", + "=IMLOG2(\"4+i\")": "2.04373142062517+0.353429502416735i", // IMPOWER - "=IMPOWER(\"2-i\",2)": "3.000000000000001-4i", - "=IMPOWER(\"2-i\",3)": "2.0000000000000018-11.000000000000002i", + "=IMPOWER(\"2-i\",2)": "3-4i", + "=IMPOWER(\"2-i\",3)": "2-11i", "=IMPOWER(9,0.5)": "3", - "=IMPOWER(\"2+4i\",-2)": "-0.029999999999999985-0.039999999999999994i", + "=IMPOWER(\"2+4i\",-2)": "-0.03-0.04i", // IMPRODUCT "=IMPRODUCT(3,6)": "18", `=IMPRODUCT("",3,SUM(6))`: "18", @@ -819,6 +819,19 @@ func TestCalcCellValue(t *testing.T) { "=BINOM.DIST(10,100,0.5,TRUE)": "1.53164508771899E-17", "=BINOM.DIST(50,100,0.5,TRUE)": "0.539794618693589", "=BINOM.DIST(65,100,0.5,TRUE)": "0.999105034804256", + // BINOM.DIST.RANGE + "=BINOM.DIST.RANGE(100,0.5,0,40)": "0.0284439668204904", + "=BINOM.DIST.RANGE(100,0.5,45,55)": "0.728746975926165", + "=BINOM.DIST.RANGE(100,0.5,50,100)": "0.539794618693589", + "=BINOM.DIST.RANGE(100,0.5,50)": "0.0795892373871787", + // BINOM.INV + "=BINOM.INV(0,0.5,0.75)": "0", + "=BINOM.INV(0.1,0.1,0.75)": "0", + "=BINOM.INV(0.6,0.4,0.75)": "0", + "=BINOM.INV(2,0.4,0.75)": "1", + "=BINOM.INV(100,0.5,20%)": "46", + "=BINOM.INV(100,0.5,50%)": "50", + "=BINOM.INV(100,0.5,90%)": "56", // CHIDIST "=CHIDIST(0.5,3)": "0.918891411654676", "=CHIDIST(8,3)": "0.0460117056892315", @@ -2436,6 +2449,30 @@ func TestCalcCellValue(t *testing.T) { "=BINOM.DIST(110,100,0.5,FALSE)": "#NUM!", "=BINOM.DIST(10,100,-1,FALSE)": "#NUM!", "=BINOM.DIST(10,100,2,FALSE)": "#NUM!", + // BINOM.DIST.RANGE + "=BINOM.DIST.RANGE()": "BINOM.DIST.RANGE requires at least 3 arguments", + "=BINOM.DIST.RANGE(100,0.5,0,40,0)": "BINOM.DIST.RANGE requires at most 4 arguments", + "=BINOM.DIST.RANGE(\"\",0.5,0,40)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.DIST.RANGE(100,\"\",0,40)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.DIST.RANGE(100,0.5,\"\",40)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.DIST.RANGE(100,0.5,0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.DIST.RANGE(100,-1,0,40)": "#NUM!", + "=BINOM.DIST.RANGE(100,2,0,40)": "#NUM!", + "=BINOM.DIST.RANGE(100,0.5,-1,40)": "#NUM!", + "=BINOM.DIST.RANGE(100,0.5,110,40)": "#NUM!", + "=BINOM.DIST.RANGE(100,0.5,0,-1)": "#NUM!", + "=BINOM.DIST.RANGE(100,0.5,0,110)": "#NUM!", + // BINOM.INV + "=BINOM.INV()": "BINOM.INV requires 3 numeric arguments", + "=BINOM.INV(\"\",0.5,20%)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.INV(100,\"\",20%)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.INV(100,0.5,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BINOM.INV(-1,0.5,20%)": "#NUM!", + "=BINOM.INV(100,-1,20%)": "#NUM!", + "=BINOM.INV(100,2,20%)": "#NUM!", + "=BINOM.INV(100,0.5,-1)": "#NUM!", + "=BINOM.INV(100,0.5,2)": "#NUM!", + "=BINOM.INV(1,1,20%)": "#NUM!", // CHIDIST "=CHIDIST()": "CHIDIST requires 2 numeric arguments", "=CHIDIST(\"\",3)": "strconv.ParseFloat: parsing \"\": invalid syntax", |