summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--calc.go165
-rw-r--r--calc_test.go22
2 files changed, 187 insertions, 0 deletions
diff --git a/calc.go b/calc.go
index ee81dcf..b65a3c4 100644
--- a/calc.go
+++ b/calc.go
@@ -232,6 +232,8 @@ var tokenPriority = map[string]int{
// BASE
// BESSELI
// BESSELJ
+// BESSELK
+// BESSELY
// BIN2DEC
// BIN2HEX
// BIN2OCT
@@ -1334,6 +1336,169 @@ func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
return newNumberFormulaArg(result)
}
+// BESSELK function calculates the modified Bessel functions, Kn(x), which are
+// also known as the hyperbolic Bessel Functions. These are the equivalent of
+// the Bessel functions, evaluated for purely imaginary arguments. The syntax
+// of the function is:
+//
+// BESSELK(x,n)
+//
+func (fn *formulaFuncs) BESSELK(argsList *list.List) formulaArg {
+ if argsList.Len() != 2 {
+ return newErrorFormulaArg(formulaErrorVALUE, "BESSELK requires 2 numeric arguments")
+ }
+ x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
+ if x.Type != ArgNumber {
+ return x
+ }
+ if n.Type != ArgNumber {
+ return n
+ }
+ if x.Number <= 0 || n.Number < 0 {
+ return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
+ }
+ var result float64
+ switch math.Floor(n.Number) {
+ case 0:
+ result = fn.besselK0(x)
+ case 1:
+ result = fn.besselK1(x)
+ default:
+ result = fn.besselK2(x, n)
+ }
+ return newNumberFormulaArg(result)
+}
+
+// besselK0 is an implementation of the formula function BESSELK.
+func (fn *formulaFuncs) besselK0(x formulaArg) float64 {
+ var y float64
+ if x.Number <= 2 {
+ n2 := x.Number * 0.5
+ y = n2 * n2
+ args := list.New()
+ args.PushBack(x)
+ args.PushBack(newNumberFormulaArg(0))
+ return -math.Log(n2)*fn.BESSELI(args).Number +
+ (-0.57721566 + y*(0.42278420+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2+y*
+ (0.10750e-3+y*0.74e-5))))))
+ }
+ y = 2 / x.Number
+ return math.Exp(-x.Number) / math.Sqrt(x.Number) *
+ (1.25331414 + y*(-0.7832358e-1+y*(0.2189568e-1+y*(-0.1062446e-1+y*
+ (0.587872e-2+y*(-0.251540e-2+y*0.53208e-3))))))
+}
+
+// besselK1 is an implementation of the formula function BESSELK.
+func (fn *formulaFuncs) besselK1(x formulaArg) float64 {
+ var n2, y float64
+ if x.Number <= 2 {
+ n2 = x.Number * 0.5
+ y = n2 * n2
+ args := list.New()
+ args.PushBack(x)
+ args.PushBack(newNumberFormulaArg(1))
+ return math.Log(n2)*fn.BESSELI(args).Number +
+ (1+y*(0.15443144+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4)))))))/x.Number
+ }
+ y = 2 / x.Number
+ return math.Exp(-x.Number) / math.Sqrt(x.Number) *
+ (1.25331414 + y*(0.23498619+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2+y*
+ (0.325614e-2+y*(-0.68245e-3)))))))
+}
+
+// besselK2 is an implementation of the formula function BESSELK.
+func (fn *formulaFuncs) besselK2(x, n formulaArg) float64 {
+ tox, bkm, bk, bkp := 2/x.Number, fn.besselK0(x), fn.besselK1(x), 0.0
+ for i := 1.0; i < n.Number; i++ {
+ bkp = bkm + i*tox*bk
+ bkm = bk
+ bk = bkp
+ }
+ return bk
+}
+
+// BESSELY function returns the Bessel function, Yn(x), (also known as the
+// Weber function or the Neumann function), for a specified order and value
+// of x. The syntax of the function is:
+//
+// BESSELY(x,n)
+//
+func (fn *formulaFuncs) BESSELY(argsList *list.List) formulaArg {
+ if argsList.Len() != 2 {
+ return newErrorFormulaArg(formulaErrorVALUE, "BESSELY requires 2 numeric arguments")
+ }
+ x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
+ if x.Type != ArgNumber {
+ return x
+ }
+ if n.Type != ArgNumber {
+ return n
+ }
+ if x.Number <= 0 || n.Number < 0 {
+ return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
+ }
+ var result float64
+ switch math.Floor(n.Number) {
+ case 0:
+ result = fn.besselY0(x)
+ case 1:
+ result = fn.besselY1(x)
+ default:
+ result = fn.besselY2(x, n)
+ }
+ return newNumberFormulaArg(result)
+}
+
+// besselY0 is an implementation of the formula function BESSELY.
+func (fn *formulaFuncs) besselY0(x formulaArg) float64 {
+ var y float64
+ if x.Number < 8 {
+ y = x.Number * x.Number
+ f1 := -2957821389.0 + y*(7062834065.0+y*(-512359803.6+y*(10879881.29+y*
+ (-86327.92757+y*228.4622733))))
+ f2 := 40076544269.0 + y*(745249964.8+y*(7189466.438+y*
+ (47447.26470+y*(226.1030244+y))))
+ args := list.New()
+ args.PushBack(x)
+ args.PushBack(newNumberFormulaArg(0))
+ return f1/f2 + 0.636619772*fn.BESSELJ(args).Number*math.Log(x.Number)
+ }
+ z := 8.0 / x.Number
+ y = z * z
+ xx := x.Number - 0.785398164
+ f1 := 1 + y*(-0.1098628627e-2+y*(0.2734510407e-4+y*(-0.2073370639e-5+y*0.2093887211e-6)))
+ f2 := -0.1562499995e-1 + y*(0.1430488765e-3+y*(-0.6911147651e-5+y*(0.7621095161e-6+y*
+ (-0.934945152e-7))))
+ return math.Sqrt(0.636619772/x.Number) * (math.Sin(xx)*f1 + z*math.Cos(xx)*f2)
+}
+
+// besselY1 is an implementation of the formula function BESSELY.
+func (fn *formulaFuncs) besselY1(x formulaArg) float64 {
+ if x.Number < 8 {
+ y := x.Number * x.Number
+ f1 := x.Number * (-0.4900604943e13 + y*(0.1275274390e13+y*(-0.5153438139e11+y*
+ (0.7349264551e9+y*(-0.4237922726e7+y*0.8511937935e4)))))
+ f2 := 0.2499580570e14 + y*(0.4244419664e12+y*(0.3733650367e10+y*(0.2245904002e8+y*
+ (0.1020426050e6+y*(0.3549632885e3+y)))))
+ args := list.New()
+ args.PushBack(x)
+ args.PushBack(newNumberFormulaArg(1))
+ return f1/f2 + 0.636619772*(fn.BESSELJ(args).Number*math.Log(x.Number)-1/x.Number)
+ }
+ return math.Sqrt(0.636619772/x.Number) * math.Sin(x.Number-2.356194491)
+}
+
+// besselY2 is an implementation of the formula function BESSELY.
+func (fn *formulaFuncs) besselY2(x, n formulaArg) float64 {
+ tox, bym, by, byp := 2/x.Number, fn.besselY0(x), fn.besselY1(x), 0.0
+ for i := 1.0; i < n.Number; i++ {
+ byp = i*tox*by - bym
+ bym = by
+ by = byp
+ }
+ return by
+}
+
// BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
// The syntax of the function is:
//
diff --git a/calc_test.go b/calc_test.go
index a6d5f97..d5d5439 100644
--- a/calc_test.go
+++ b/calc_test.go
@@ -52,6 +52,16 @@ func TestCalcCellValue(t *testing.T) {
"=BESSELI(32,1)": "5.502845511211247e+12",
// BESSELJ
"=BESSELJ(1.9,2)": "0.329925727692387",
+ // BESSELK
+ "=BESSELK(0.05,0)": "3.114234034289662",
+ "=BESSELK(0.05,1)": "19.90967432724863",
+ "=BESSELK(0.05,2)": "799.501207124235",
+ "=BESSELK(3,2)": "0.061510458561912",
+ // BESSELY
+ "=BESSELY(0.05,0)": "-1.979311006841528",
+ "=BESSELY(0.05,1)": "-12.789855163794034",
+ "=BESSELY(0.05,2)": "-509.61489554491976",
+ "=BESSELY(9,2)": "-0.229082087487741",
// BIN2DEC
"=BIN2DEC(\"10\")": "2",
"=BIN2DEC(\"11\")": "3",
@@ -1208,6 +1218,18 @@ func TestCalcCellValue(t *testing.T) {
"=BESSELJ()": "BESSELJ requires 2 numeric arguments",
"=BESSELJ(\"\",0)": "strconv.ParseFloat: parsing \"\": invalid syntax",
"=BESSELJ(0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
+ // BESSELK
+ "=BESSELK()": "BESSELK requires 2 numeric arguments",
+ "=BESSELK(\"\",0)": "strconv.ParseFloat: parsing \"\": invalid syntax",
+ "=BESSELK(0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
+ "=BESSELK(-1,0)": "#NUM!",
+ "=BESSELK(1,-1)": "#NUM!",
+ // BESSELY
+ "=BESSELY()": "BESSELY requires 2 numeric arguments",
+ "=BESSELY(\"\",0)": "strconv.ParseFloat: parsing \"\": invalid syntax",
+ "=BESSELY(0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
+ "=BESSELY(-1,0)": "#NUM!",
+ "=BESSELY(1,-1)": "#NUM!",
// BIN2DEC
"=BIN2DEC()": "BIN2DEC requires 1 numeric argument",
"=BIN2DEC(\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",