summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--calc.go362
-rw-r--r--calc_test.go71
2 files changed, 394 insertions, 39 deletions
diff --git a/calc.go b/calc.go
index 5ebdcf7..7c912eb 100644
--- a/calc.go
+++ b/calc.go
@@ -102,11 +102,17 @@ func getPriority(token efp.Token) (pri int) {
// opf - Operation formula
// opfd - Operand of the operation formula
// opft - Operator of the operation formula
+//
+// Evaluate arguments of the operation formula by list:
+//
// args - Arguments of the operation formula
//
+// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
+//
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
var err error
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
+ opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
+ argsList := list.New()
for i := 0; i < len(tokens); i++ {
token := tokens[i]
@@ -155,7 +161,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
return efp.Token{TValue: formulaErrorNAME}, err
}
for _, val := range result {
- argsStack.Push(efp.Token{
+ argsList.PushBack(efp.Token{
TType: efp.TokenTypeOperand,
TSubType: efp.TokenSubTypeNumber,
TValue: val,
@@ -184,11 +190,20 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
opftStack.Pop()
}
if !opfdStack.Empty() {
- argsStack.Push(opfdStack.Pop())
+ argsList.PushBack(opfdStack.Pop())
}
continue
}
+ // current token is logical
+ if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
+ }
+
+ // current token is text
+ if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
+ argsList.PushBack(token)
+ }
+
// current token is function stop
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
for !opftStack.Empty() {
@@ -202,13 +217,14 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
// push opfd to args
if opfdStack.Len() > 0 {
- argsStack.Push(opfdStack.Pop())
+ argsList.PushBack(opfdStack.Pop())
}
// call formula function to evaluate
- result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)})
+ result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)})
if err != nil {
return efp.Token{}, err
}
+ argsList.Init()
opfStack.Pop()
if opfStack.Len() > 0 { // still in function stack
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
@@ -480,13 +496,13 @@ func callFuncByName(receiver interface{}, name string, params []reflect.Value) (
//
// ABS(number)
//
-func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 1 {
+func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
err = errors.New("ABS requires 1 numeric arguments")
return
}
var val float64
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
@@ -494,6 +510,236 @@ func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
return
}
+// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
+// number, and returns an angle, in radians, between 0 and π. The syntax of
+// the function is:
+//
+// ACOS(number)
+//
+func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ACOS requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Acos(val))
+ return
+}
+
+// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
+// of the function is:
+//
+// ACOSH(number)
+//
+func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ACOSH requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Acosh(val))
+ return
+}
+
+// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
+// given number, and returns an angle, in radians, between 0 and π. The syntax
+// of the function is:
+//
+// ACOT(number)
+//
+func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ACOT requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
+ return
+}
+
+// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
+// value. The syntax of the function is:
+//
+// ACOTH(number)
+//
+func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ACOTH requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Atanh(1/val))
+ return
+}
+
+// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
+// of the function is:
+//
+// ARABIC(text)
+//
+func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ARABIC requires 1 numeric arguments")
+ return
+ }
+ val, last, prefix := 0.0, 0.0, 1.0
+ for _, char := range argsList.Front().Value.(efp.Token).TValue {
+ digit := 0.0
+ switch char {
+ case '-':
+ prefix = -1
+ continue
+ case 'I':
+ digit = 1
+ case 'V':
+ digit = 5
+ case 'X':
+ digit = 10
+ case 'L':
+ digit = 50
+ case 'C':
+ digit = 100
+ case 'D':
+ digit = 500
+ case 'M':
+ digit = 1000
+ }
+ val += digit
+ switch {
+ case last == digit && (last == 5 || last == 50 || last == 500):
+ result = formulaErrorVALUE
+ return
+ case 2*last == digit:
+ result = formulaErrorVALUE
+ return
+ }
+ if last < digit {
+ val -= 2 * last
+ }
+ last = digit
+ }
+ result = fmt.Sprintf("%g", prefix*val)
+ return
+}
+
+// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
+// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
+// of the function is:
+//
+// ASIN(number)
+//
+func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ASIN requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Asin(val))
+ return
+}
+
+// ASINH function calculates the inverse hyperbolic sine of a supplied number.
+// The syntax of the function is:
+//
+// ASINH(number)
+//
+func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ASINH requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Asinh(val))
+ return
+}
+
+// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
+// given number, and returns an angle, in radians, between -π/2 and +π/2. The
+// syntax of the function is:
+//
+// ATAN(number)
+//
+func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ATAN requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Atan(val))
+ return
+}
+
+// ATANH function calculates the inverse hyperbolic tangent of a supplied
+// number. The syntax of the function is:
+//
+// ATANH(number)
+//
+func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
+ err = errors.New("ATANH requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Atanh(val))
+ return
+}
+
+// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
+// given set of x and y coordinates, and returns an angle, in radians, between
+// -π/2 and +π/2. The syntax of the function is:
+//
+// ATAN2(x_num,y_num)
+//
+func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 2 {
+ err = errors.New("ATAN2 requires 2 numeric arguments")
+ return
+ }
+ var x, y float64
+ x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ result = fmt.Sprintf("%g", math.Atan2(x, y))
+ return
+}
+
// gcd returns the greatest common divisor of two supplied integers.
func gcd(x, y float64) float64 {
x, y = math.Trunc(x), math.Trunc(y)
@@ -513,13 +759,55 @@ func gcd(x, y float64) float64 {
return x
}
+// BASE function converts a number into a supplied base (radix), and returns a
+// text representation of the calculated value. The syntax of the function is:
+//
+// BASE(number,radix,[min_length])
+//
+func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
+ if argsList.Len() < 2 {
+ err = errors.New("BASE requires at least 2 arguments")
+ return
+ }
+ if argsList.Len() > 3 {
+ err = errors.New("BASE allows at most 3 arguments")
+ return
+ }
+ var number float64
+ var radix, minLength int
+ number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
+ if err != nil {
+ return
+ }
+ if radix < 2 || radix > 36 {
+ err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
+ return
+ }
+ if argsList.Len() > 2 {
+ minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
+ if err != nil {
+ return
+ }
+ }
+ result = strconv.FormatInt(int64(number), radix)
+ if len(result) < minLength {
+ result = strings.Repeat("0", minLength-len(result)) + result
+ }
+ result = strings.ToUpper(result)
+ return
+}
+
// GCD function returns the greatest common divisor of two or more supplied
-// integers.The syntax of the function is:
+// integers. The syntax of the function is:
//
// GCD(number1,[number2],...)
//
-func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
- if argsStack.Len() == 0 {
+func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
+ if argsList.Len() == 0 {
err = errors.New("GCD requires at least 1 argument")
return
}
@@ -527,8 +815,8 @@ func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
val float64
nums = []float64{}
)
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
+ token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
@@ -573,8 +861,8 @@ func lcm(a, b float64) float64 {
//
// LCM(number1,[number2],...)
//
-func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
- if argsStack.Len() == 0 {
+func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
+ if argsList.Len() == 0 {
err = errors.New("LCM requires at least 1 argument")
return
}
@@ -582,8 +870,8 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
val float64
nums = []float64{}
)
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
+ token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
@@ -618,17 +906,17 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
//
// POWER(number,power)
//
-func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 2 {
+func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 2 {
err = errors.New("POWER requires 2 numeric arguments")
return
}
var x, y float64
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
@@ -649,13 +937,13 @@ func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
//
// PRODUCT(number1,[number2],...)
//
-func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
+func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
var (
val float64
product float64 = 1
)
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
+ token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
@@ -676,13 +964,13 @@ func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
//
// SIGN(number)
//
-func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 1 {
+func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
err = errors.New("SIGN requires 1 numeric arguments")
return
}
var val float64
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
@@ -703,13 +991,13 @@ func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
//
// SQRT(number)
//
-func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 1 {
+func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 1 {
err = errors.New("SQRT requires 1 numeric arguments")
return
}
var val float64
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
@@ -726,11 +1014,11 @@ func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
//
// SUM(number1,[number2],...)
//
-func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
+func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
var val float64
var sum float64
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
+ token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
@@ -749,17 +1037,17 @@ func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
//
// QUOTIENT(numerator,denominator)
//
-func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 2 {
+func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
+ if argsList.Len() != 2 {
err = errors.New("QUOTIENT requires 2 numeric arguments")
return
}
var x, y float64
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
diff --git a/calc_test.go b/calc_test.go
index 84fa955..bb8ae8a 100644
--- a/calc_test.go
+++ b/calc_test.go
@@ -24,6 +24,49 @@ func TestCalcCellValue(t *testing.T) {
"=ABS(6.5)": "6.5",
"=ABS(0)": "0",
"=ABS(2-4.5)": "2.5",
+ // ACOS
+ "=ACOS(-1)": "3.141592653589793",
+ "=ACOS(0)": "1.5707963267948966",
+ // ACOSH
+ "=ACOSH(1)": "0",
+ "=ACOSH(2.5)": "1.566799236972411",
+ "=ACOSH(5)": "2.2924316695611777",
+ // ACOT
+ "=_xlfn.ACOT(1)": "0.7853981633974483",
+ "=_xlfn.ACOT(-2)": "2.677945044588987",
+ "=_xlfn.ACOT(0)": "1.5707963267948966",
+ // ACOTH
+ "=_xlfn.ACOTH(-5)": "-0.2027325540540822",
+ "=_xlfn.ACOTH(1.1)": "1.5222612188617113",
+ "=_xlfn.ACOTH(2)": "0.5493061443340548",
+ // ARABIC
+ `=_xlfn.ARABIC("IV")`: "4",
+ `=_xlfn.ARABIC("-IV")`: "-4",
+ `=_xlfn.ARABIC("MCXX")`: "1120",
+ `=_xlfn.ARABIC("")`: "0",
+ // ASIN
+ "=ASIN(-1)": "-1.5707963267948966",
+ "=ASIN(0)": "0",
+ // ASINH
+ "=ASINH(0)": "0",
+ "=ASINH(-0.5)": "-0.48121182505960347",
+ "=ASINH(2)": "1.4436354751788103",
+ // ATAN
+ "=ATAN(-1)": "-0.7853981633974483",
+ "=ATAN(0)": "0",
+ "=ATAN(1)": "0.7853981633974483",
+ // ATANH
+ "=ATANH(-0.8)": "-1.0986122886681098",
+ "=ATANH(0)": "0",
+ "=ATANH(0.5)": "0.5493061443340548",
+ // ATAN2
+ "=ATAN2(1,1)": "0.7853981633974483",
+ "=ATAN2(1,-1)": "-0.7853981633974483",
+ "=ATAN2(4,0)": "0",
+ // BASE
+ "=BASE(12,2)": "1100",
+ "=BASE(12,2,8)": "00001100",
+ "=BASE(100000,16)": "186A0",
// GCD
"=GCD(1,5)": "1",
"=GCD(15,10,25)": "5",
@@ -74,8 +117,32 @@ func TestCalcCellValue(t *testing.T) {
}
mathCalcError := map[string]string{
// ABS
- "=ABS(1,2)": "ABS requires 1 numeric arguments",
- "=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`,
+ "=ABS()": "ABS requires 1 numeric arguments",
+ "=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`,
+ // ACOS
+ "=ACOS()": "ACOS requires 1 numeric arguments",
+ // ACOSH
+ "=ACOSH()": "ACOSH requires 1 numeric arguments",
+ // ACOT
+ "=_xlfn.ACOT()": "ACOT requires 1 numeric arguments",
+ // ACOTH
+ "=_xlfn.ACOTH()": "ACOTH requires 1 numeric arguments",
+ // ARABIC
+ "_xlfn.ARABIC()": "ARABIC requires 1 numeric arguments",
+ // ASIN
+ "=ASIN()": "ASIN requires 1 numeric arguments",
+ // ASINH
+ "=ASINH()": "ASINH requires 1 numeric arguments",
+ // ATAN
+ "=ATAN()": "ATAN requires 1 numeric arguments",
+ // ATANH
+ "=ATANH()": "ATANH requires 1 numeric arguments",
+ // ATAN2
+ "=ATAN2()": "ATAN2 requires 2 numeric arguments",
+ // BASE
+ "=BASE()": "BASE requires at least 2 arguments",
+ "=BASE(1,2,3,4)": "BASE allows at most 3 arguments",
+ "=BASE(1,1)": "radix must be an integer ≥ 2 and ≤ 36",
// GCD
"=GCD()": "GCD requires at least 1 argument",
"=GCD(-1)": "GCD only accepts positive arguments",