diff options
-rw-r--r-- | calc.go | 338 | ||||
-rw-r--r-- | calc_test.go | 76 |
2 files changed, 382 insertions, 32 deletions
@@ -12,13 +12,16 @@ package excelize import ( + "bytes" "container/list" "errors" "fmt" "math" + "math/rand" "reflect" "strconv" "strings" + "time" "github.com/xuri/efp" ) @@ -1715,6 +1718,168 @@ func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) return } +// MOD function returns the remainder of a division between two supplied +// numbers. The syntax of the function is: +// +// MOD(number,divisor) +// +func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { + err = errors.New("MOD requires 2 numeric arguments") + return + } + var number, divisor float64 + if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil { + return + } + if divisor == 0 { + err = errors.New(formulaErrorDIV) + return + } + trunc, rem := math.Modf(number / divisor) + if rem < 0 { + trunc-- + } + result = fmt.Sprintf("%g", number-divisor*trunc) + return +} + +// MROUND function rounds a supplied number up or down to the nearest multiple +// of a given number. The syntax of the function is: +// +// MOD(number,multiple) +// +func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { + err = errors.New("MROUND requires 2 numeric arguments") + return + } + var number, multiple float64 = 0, 1 + if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil { + return + } + if multiple == 0 { + err = errors.New(formulaErrorNUM) + return + } + if multiple < 0 && number > 0 || + multiple > 0 && number < 0 { + err = errors.New(formulaErrorNUM) + return + } + number, res := math.Modf(number / multiple) + if math.Trunc(res+0.5) > 0 { + number++ + } + result = fmt.Sprintf("%g", number*multiple) + return +} + +// MULTINOMIAL function calculates the ratio of the factorial of a sum of +// supplied values to the product of factorials of those values. The syntax of +// the function is: +// +// MULTINOMIAL(number1,[number2],...) +// +func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) { + var val, num, denom float64 = 0, 0, 1 + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(formulaArg) + if token.Value == "" { + continue + } + if val, err = strconv.ParseFloat(token.Value, 64); err != nil { + return + } + num += val + denom *= fact(val) + } + result = fmt.Sprintf("%g", fact(num)/denom) + return +} + +// MUNIT function returns the unit matrix for a specified dimension. The +// syntax of the function is: +// +// MUNIT(dimension) +// +func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("MUNIT requires 1 numeric argument") + return + } + var dimension int + if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).Value); err != nil { + return + } + matrix := make([][]float64, 0, dimension) + for i := 0; i < dimension; i++ { + row := make([]float64, dimension) + for j := 0; j < dimension; j++ { + if i == j { + row[j] = float64(1.0) + } else { + row[j] = float64(0.0) + } + } + matrix = append(matrix, row) + } + return +} + +// ODD function ounds a supplied number away from zero (i.e. rounds a positive +// number up and a negative number down), to the next odd number. The syntax +// of the function is: +// +// ODD(number) +// +func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ODD requires 1 numeric argument") + return + } + var number float64 + if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + if number == 0 { + result = "1" + return + } + sign := math.Signbit(number) + m, frac := math.Modf((number - 1) / 2) + val := m*2 + 1 + if frac != 0 { + if !sign { + val += 2 + } else { + val -= 2 + } + } + result = fmt.Sprintf("%g", val) + return +} + +// PI function returns the value of the mathematical constant π (pi), accurate +// to 15 digits (14 decimal places). The syntax of the function is: +// +// PI() +// +func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) { + if argsList.Len() != 0 { + err = errors.New("PI accepts no arguments") + return + } + result = fmt.Sprintf("%g", math.Pi) + return +} + // POWER function calculates a given number, raised to a supplied power. // The syntax of the function is: // @@ -1765,6 +1930,154 @@ func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) return } +// QUOTIENT function returns the integer portion of a division between two +// supplied numbers. The syntax of the function is: +// +// QUOTIENT(numerator,denominator) +// +func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { + err = errors.New("QUOTIENT requires 2 numeric arguments") + return + } + var x, y float64 + if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil { + return + } + if y == 0 { + err = errors.New(formulaErrorDIV) + return + } + result = fmt.Sprintf("%g", math.Trunc(x/y)) + return +} + +// RADIANS function converts radians into degrees. The syntax of the function is: +// +// RADIANS(angle) +// +func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("RADIANS requires 1 numeric argument") + return + } + var angle float64 + if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + result = fmt.Sprintf("%g", math.Pi/180.0*angle) + return +} + +// RAND function generates a random real number between 0 and 1. The syntax of +// the function is: +// +// RAND() +// +func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) { + if argsList.Len() != 0 { + err = errors.New("RAND accepts no arguments") + return + } + result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64()) + return +} + +// RANDBETWEEN function generates a random integer between two supplied +// integers. The syntax of the function is: +// +// RANDBETWEEN(bottom,top) +// +func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { + err = errors.New("RANDBETWEEN requires 2 numeric arguments") + return + } + var bottom, top int64 + if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).Value, 10, 64); err != nil { + return + } + if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).Value, 10, 64); err != nil { + return + } + if top < bottom { + err = errors.New(formulaErrorNUM) + return + } + result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom)) + return +} + +// romanNumerals defined a numeral system that originated in ancient Rome and +// remained the usual way of writing numbers throughout Europe well into the +// Late Middle Ages. +type romanNumerals struct { + n float64 + s string +} + +var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, + {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, + {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, + {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, + {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}} + +// ROMAN function converts an arabic number to Roman. I.e. for a supplied +// integer, the function returns a text string depicting the roman numeral +// form of the number. The syntax of the function is: +// +// ROMAN(number,[form]) +// +func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) { + if argsList.Len() == 0 { + err = errors.New("ROMAN requires at least 1 argument") + return + } + if argsList.Len() > 2 { + err = errors.New("ROMAN allows at most 2 arguments") + return + } + var number float64 + var form int + if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { + return + } + if argsList.Len() > 1 { + if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil { + return + } + if form < 0 { + form = 0 + } else if form > 4 { + form = 4 + } + } + decimalTable := romanTable[0] + switch form { + case 1: + decimalTable = romanTable[1] + case 2: + decimalTable = romanTable[2] + case 3: + decimalTable = romanTable[3] + case 4: + decimalTable = romanTable[4] + } + val := math.Trunc(number) + buf := bytes.Buffer{} + for _, r := range decimalTable { + for val >= r.n { + buf.WriteString(r.s) + val -= r.n + } + } + result = buf.String() + return +} + // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied // number. I.e. if the number is positive, the Sign function returns +1, if // the number is negative, the function returns -1 and if the number is 0 @@ -1840,28 +2153,3 @@ func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) { result = fmt.Sprintf("%g", sum) return } - -// QUOTIENT function returns the integer portion of a division between two -// supplied numbers. The syntax of the function is: -// -// QUOTIENT(numerator,denominator) -// -func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) { - if argsList.Len() != 2 { - err = errors.New("QUOTIENT requires 2 numeric arguments") - return - } - var x, y float64 - if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil { - return - } - if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil { - return - } - if y == 0 { - err = errors.New(formulaErrorDIV) - return - } - result = fmt.Sprintf("%g", math.Trunc(x/y)) - return -} diff --git a/calc_test.go b/calc_test.go index c66de8c..2b35e48 100644 --- a/calc_test.go +++ b/calc_test.go @@ -218,10 +218,54 @@ func TestCalcCellValue(t *testing.T) { "=LOG10(1000)": "3", "=LOG10(0.001)": "-3", "=LOG10(25)": "1.3979400086720375", + // MOD + "=MOD(6,4)": "2", + "=MOD(6,3)": "0", + "=MOD(6,2.5)": "1", + "=MOD(6,1.333)": "0.6680000000000001", + // MROUND + "=MROUND(333.7,0.5)": "333.5", + "=MROUND(333.8,1)": "334", + "=MROUND(333.3,2)": "334", + "=MROUND(555.3,400)": "400", + "=MROUND(555,1000)": "1000", + "=MROUND(-555.7,-1)": "-556", + "=MROUND(-555.4,-1)": "-555", + "=MROUND(-1555,-1000)": "-2000", + // MULTINOMIAL + "=MULTINOMIAL(3,1,2,5)": "27720", + // _xlfn.MUNIT + "=_xlfn.MUNIT(4)": "", // not support currently + // ODD + "=ODD(22)": "23", + "=ODD(1.22)": "3", + "=ODD(1.22+4)": "7", + "=ODD(0)": "1", + "=ODD(-1.3)": "-3", + "=ODD(-10)": "-11", + "=ODD(-3)": "-3", + // PI + "=PI()": "3.141592653589793", // POWER "=POWER(4,2)": "16", // PRODUCT "=PRODUCT(3,6)": "18", + // QUOTIENT + "=QUOTIENT(5,2)": "2", + "=QUOTIENT(4.5,3.1)": "1", + "=QUOTIENT(-10,3)": "-3", + // RADIANS + "=RADIANS(50)": "0.8726646259971648", + "=RADIANS(-180)": "-3.141592653589793", + "=RADIANS(180)": "3.141592653589793", + "=RADIANS(360)": "6.283185307179586", + // ROMAN + "=ROMAN(499,0)": "CDXCIX", + "=ROMAN(1999,0)": "MCMXCIX", + "=ROMAN(1999,1)": "MLMVLIV", + "=ROMAN(1999,2)": "MXMIX", + "=ROMAN(1999,3)": "MVMIV", + "=ROMAN(1999,4)": "MIM", // SIGN "=SIGN(9.5)": "1", "=SIGN(-9.5)": "-1", @@ -244,10 +288,6 @@ func TestCalcCellValue(t *testing.T) { "=((3+5*2)+3)/5+(-6)/4*2+3": "3.2", "=1+SUM(SUM(1,2*3),4)*-4/2+5+(4+2)*3": "2", "=1+SUM(SUM(1,2*3),4)*4/3+5+(4+2)*3": "38.666666666666664", - // QUOTIENT - "=QUOTIENT(5, 2)": "2", - "=QUOTIENT(4.5, 3.1)": "1", - "=QUOTIENT(-10, 3)": "-3", } for formula, expected := range mathCalc { f := prepareData() @@ -362,18 +402,40 @@ func TestCalcCellValue(t *testing.T) { "=LOG(1,1)": "#DIV/0!", // LOG10 "=LOG10()": "LOG10 requires 1 numeric argument", + // MOD + "=MOD()": "MOD requires 2 numeric arguments", + "=MOD(6,0)": "#DIV/0!", + // MROUND + "=MROUND()": "MROUND requires 2 numeric arguments", + "=MROUND(1,0)": "#NUM!", + // _xlfn.MUNIT + "=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently + // ODD + "=ODD()": "ODD requires 1 numeric argument", + // PI + "=PI(1)": "PI accepts no arguments", // POWER "=POWER(0,0)": "#NUM!", "=POWER(0,-1)": "#DIV/0!", "=POWER(1)": "POWER requires 2 numeric arguments", + // QUOTIENT + "=QUOTIENT(1,0)": "#DIV/0!", + "=QUOTIENT(1)": "QUOTIENT requires 2 numeric arguments", + // RADIANS + "=RADIANS()": "RADIANS requires 1 numeric argument", + // RAND + "=RAND(1)": "RAND accepts no arguments", + // RANDBETWEEN + "=RANDBETWEEN()": "RANDBETWEEN requires 2 numeric arguments", + "=RANDBETWEEN(2,1)": "#NUM!", + // ROMAN + "=ROMAN()": "ROMAN requires at least 1 argument", + "=ROMAN(1,2,3)": "ROMAN allows at most 2 arguments", // SIGN "=SIGN()": "SIGN requires 1 numeric argument", // SQRT "=SQRT(-1)": "#NUM!", "=SQRT(1,2)": "SQRT requires 1 numeric argument", - // QUOTIENT - "=QUOTIENT(1,0)": "#DIV/0!", - "=QUOTIENT(1)": "QUOTIENT requires 2 numeric arguments", } for formula, expected := range mathCalcError { f := prepareData() |