summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go100
1 files changed, 100 insertions, 0 deletions
diff --git a/calc.go b/calc.go
index 04d0f8b..631d52f 100644
--- a/calc.go
+++ b/calc.go
@@ -341,6 +341,8 @@ var tokenPriority = map[string]int{
// OR
// PERMUT
// PI
+// POISSON.DIST
+// POISSON
// POWER
// PRODUCT
// PROPER
@@ -365,10 +367,12 @@ var tokenPriority = map[string]int{
// SIGN
// SIN
// SINH
+// SKEW
// SMALL
// SQRT
// SQRTPI
// STDEV
+// STDEV.S
// STDEVA
// SUBSTITUTE
// SUM
@@ -3396,6 +3400,18 @@ func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
return fn.stdev(false, argsList)
}
+// STDEVdotS function calculates the sample standard deviation of a supplied
+// set of values. The syntax of the function is:
+//
+// STDEV.S(number1,[number2],...)
+//
+func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
+ if argsList.Len() < 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
+ }
+ return fn.stdev(false, argsList)
+}
+
// STDEVA function estimates standard deviation based on a sample. The
// standard deviation is a measure of how widely values are dispersed from
// the average value (the mean). The syntax of the function is:
@@ -3472,6 +3488,53 @@ func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
+// POISSONdotDIST function calculates the Poisson Probability Mass Function or
+// the Cumulative Poisson Probability Function for a supplied set of
+// parameters. The syntax of the function is:
+//
+// POISSON.DIST(x,mean,cumulative)
+//
+func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
+ if argsList.Len() != 3 {
+ return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
+ }
+ return fn.POISSON(argsList)
+}
+
+// POISSON function calculates the Poisson Probability Mass Function or the
+// Cumulative Poisson Probability Function for a supplied set of parameters.
+// The syntax of the function is:
+//
+// POISSON(x,mean,cumulative)
+//
+func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
+ if argsList.Len() != 3 {
+ return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
+ }
+ var x, mean, cumulative formulaArg
+ if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
+ return x
+ }
+ if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
+ return mean
+ }
+ if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
+ return cumulative
+ }
+ if x.Number < 0 || mean.Number <= 0 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ if cumulative.Number == 1 {
+ summer := 0.0
+ floor := math.Floor(x.Number)
+ for i := 0; i <= int(floor); i++ {
+ summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
+ }
+ return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
+ }
+ return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
+}
+
// SUM function adds together a supplied set of numbers and returns the sum of
// these values. The syntax of the function is:
//
@@ -4479,6 +4542,43 @@ func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
}
+// SKEW function calculates the skewness of the distribution of a supplied set
+// of values. The syntax of the function is:
+//
+// SKEW(number1,[number2],...)
+//
+func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
+ if argsList.Len() < 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
+ }
+ mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
+ token := arg.Value.(formulaArg)
+ switch token.Type {
+ case ArgNumber, ArgString:
+ num := token.ToNumber()
+ if num.Type == ArgError {
+ return num
+ }
+ summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
+ count++
+ case ArgList, ArgMatrix:
+ for _, row := range token.ToList() {
+ numArg := row.ToNumber()
+ if numArg.Type != ArgNumber {
+ continue
+ }
+ summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
+ count++
+ }
+ }
+ }
+ if count > 2 {
+ return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
+ }
+ return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
+}
+
// SMALL function returns the k'th smallest value from an array of numeric
// values. The syntax of the function is:
//