diff options
Diffstat (limited to 'calc.go')
-rw-r--r-- | calc.go | 605 |
1 files changed, 605 insertions, 0 deletions
@@ -0,0 +1,605 @@ +// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of +// this source code is governed by a BSD-style license that can be found in +// the LICENSE file. +// +// Package excelize providing a set of functions that allow you to write to +// and read from XLSX / XLSM / XLTM files. Supports reading and writing +// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports +// complex components by high compatibility, and provided streaming API for +// generating or reading data from a worksheet with huge amounts of data. This +// library needs Go version 1.10 or later. + +package excelize + +import ( + "container/list" + "errors" + "fmt" + "math" + "reflect" + "strconv" + "strings" + + "github.com/xuri/efp" +) + +// Excel formula errors +const ( + formulaErrorDIV = "#DIV/0!" + formulaErrorNAME = "#NAME?" + formulaErrorNA = "#N/A" + formulaErrorNUM = "#NUM!" + formulaErrorVALUE = "#VALUE!" + formulaErrorREF = "#REF!" + formulaErrorNULL = "#NULL" + formulaErrorSPILL = "#SPILL!" + formulaErrorCALC = "#CALC!" + formulaErrorGETTINGDATA = "#GETTING_DATA" +) + +// cellRef defines the structure of a cell reference +type cellRef struct { + Col int + Row int + Sheet string +} + +// cellRef defines the structure of a cell range +type cellRange struct { + From cellRef + To cellRef +} + +type formulaFuncs struct{} + +// CalcCellValue provides a function to get calculated cell value. This +// feature is currently in beta. Array formula, table formula and some other +// formulas are not supported currently. +func (f *File) CalcCellValue(sheet, cell string) (result string, err error) { + var ( + formula string + token efp.Token + ) + if formula, err = f.GetCellFormula(sheet, cell); err != nil { + return + } + ps := efp.ExcelParser() + tokens := ps.Parse(formula) + if tokens == nil { + return + } + if token, err = f.evalInfixExp(sheet, tokens); err != nil { + return + } + result = token.TValue + return +} + +// getPriority calculate arithmetic operator priority. +func getPriority(token efp.Token) (pri int) { + var priority = map[string]int{ + "*": 2, + "/": 2, + "+": 1, + "-": 1, + } + pri, _ = priority[token.TValue] + if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix { + pri = 3 + } + if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // ( + pri = 0 + } + return +} + +// evalInfixExp evaluate syntax analysis by given infix expression after +// lexical analysis. Evaluate an infix expression containing formulas by +// stacks: +// +// opd - Operand +// opt - Operator +// opf - Operation formula +// opfd - Operand of the operation formula +// opft - Operator of the operation formula +// args - Arguments of the operation formula +// +func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { + var err error + opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack() + for i := 0; i < len(tokens); i++ { + token := tokens[i] + + // out of function stack + if opfStack.Len() == 0 { + if err = f.parseToken(sheet, token, opdStack, optStack); err != nil { + return efp.Token{}, err + } + } + + // function start + if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart { + opfStack.Push(token) + continue + } + + // in function stack, walk 2 token at once + if opfStack.Len() > 0 { + var nextToken efp.Token + if i+1 < len(tokens) { + nextToken = tokens[i+1] + } + + // current token is args or range, skip next token, order required: parse reference first + if token.TSubType == efp.TokenSubTypeRange { + if !opftStack.Empty() { + // parse reference: must reference at here + result, err := f.parseReference(sheet, token.TValue) + if err != nil { + return efp.Token{TValue: formulaErrorNAME}, err + } + if len(result) != 1 { + return efp.Token{}, errors.New(formulaErrorVALUE) + } + opfdStack.Push(efp.Token{ + TType: efp.TokenTypeOperand, + TSubType: efp.TokenSubTypeNumber, + TValue: result[0], + }) + continue + } + if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction { + // parse reference: reference or range at here + result, err := f.parseReference(sheet, token.TValue) + if err != nil { + return efp.Token{TValue: formulaErrorNAME}, err + } + for _, val := range result { + argsStack.Push(efp.Token{ + TType: efp.TokenTypeOperand, + TSubType: efp.TokenSubTypeNumber, + TValue: val, + }) + } + if len(result) == 0 { + return efp.Token{}, errors.New(formulaErrorVALUE) + } + continue + } + } + + // check current token is opft + if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil { + return efp.Token{}, err + } + + // current token is arg + if token.TType == efp.TokenTypeArgument { + for !opftStack.Empty() { + // calculate trigger + topOpt := opftStack.Peek().(efp.Token) + if err := calculate(opfdStack, topOpt); err != nil { + return efp.Token{}, err + } + opftStack.Pop() + } + if !opfdStack.Empty() { + argsStack.Push(opfdStack.Pop()) + } + continue + } + + // current token is function stop + if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop { + for !opftStack.Empty() { + // calculate trigger + topOpt := opftStack.Peek().(efp.Token) + if err := calculate(opfdStack, topOpt); err != nil { + return efp.Token{}, err + } + opftStack.Pop() + } + + // push opfd to args + if opfdStack.Len() > 0 { + argsStack.Push(opfdStack.Pop()) + } + // call formula function to evaluate + result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)}) + if err != nil { + return efp.Token{}, err + } + opfStack.Pop() + if opfStack.Len() > 0 { // still in function stack + opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } else { + opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + } + } + } + for optStack.Len() != 0 { + topOpt := optStack.Peek().(efp.Token) + if err = calculate(opdStack, topOpt); err != nil { + return efp.Token{}, err + } + optStack.Pop() + } + return opdStack.Peek().(efp.Token), err +} + +// calculate evaluate basic arithmetic operations. +func calculate(opdStack *Stack, opt efp.Token) error { + if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix { + opd := opdStack.Pop().(efp.Token) + opdVal, err := strconv.ParseFloat(opd.TValue, 64) + if err != nil { + return err + } + result := 0 - opdVal + opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + if opt.TValue == "+" { + rOpd := opdStack.Pop().(efp.Token) + lOpd := opdStack.Pop().(efp.Token) + lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) + if err != nil { + return err + } + rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) + if err != nil { + return err + } + result := lOpdVal + rOpdVal + opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix { + rOpd := opdStack.Pop().(efp.Token) + lOpd := opdStack.Pop().(efp.Token) + lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) + if err != nil { + return err + } + rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) + if err != nil { + return err + } + result := lOpdVal - rOpdVal + opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + if opt.TValue == "*" { + rOpd := opdStack.Pop().(efp.Token) + lOpd := opdStack.Pop().(efp.Token) + lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) + if err != nil { + return err + } + rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) + if err != nil { + return err + } + result := lOpdVal * rOpdVal + opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + if opt.TValue == "/" { + rOpd := opdStack.Pop().(efp.Token) + lOpd := opdStack.Pop().(efp.Token) + lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) + if err != nil { + return err + } + rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) + if err != nil { + return err + } + result := lOpdVal / rOpdVal + if rOpdVal == 0 { + return errors.New(formulaErrorDIV) + } + opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } + return nil +} + +// parseToken parse basic arithmetic operator priority and evaluate based on +// operators and operands. +func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error { + // parse reference: must reference at here + if token.TSubType == efp.TokenSubTypeRange { + result, err := f.parseReference(sheet, token.TValue) + if err != nil { + return errors.New(formulaErrorNAME) + } + if len(result) != 1 { + return errors.New(formulaErrorVALUE) + } + token.TValue = result[0] + token.TType = efp.TokenTypeOperand + token.TSubType = efp.TokenSubTypeNumber + } + if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" { + if optStack.Len() == 0 { + optStack.Push(token) + } else { + tokenPriority := getPriority(token) + topOpt := optStack.Peek().(efp.Token) + topOptPriority := getPriority(topOpt) + if tokenPriority > topOptPriority { + optStack.Push(token) + } else { + for tokenPriority <= topOptPriority { + optStack.Pop() + if err := calculate(opdStack, topOpt); err != nil { + return err + } + if optStack.Len() > 0 { + topOpt = optStack.Peek().(efp.Token) + topOptPriority = getPriority(topOpt) + continue + } + break + } + optStack.Push(token) + } + } + } + if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // ( + optStack.Push(token) + } + if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // ) + for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != ( + topOpt := optStack.Peek().(efp.Token) + if err := calculate(opdStack, topOpt); err != nil { + return err + } + optStack.Pop() + } + optStack.Pop() + } + // opd + if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber { + opdStack.Push(token) + } + return nil +} + +// parseReference parse reference and extract values by given reference +// characters and default sheet name. +func (f *File) parseReference(sheet, reference string) (result []string, err error) { + reference = strings.Replace(reference, "$", "", -1) + refs, cellRanges, cellRefs := list.New(), list.New(), list.New() + for _, ref := range strings.Split(reference, ":") { + tokens := strings.Split(ref, "!") + cr := cellRef{} + if len(tokens) == 2 { // have a worksheet name + cr.Sheet = tokens[0] + if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil { + return + } + if refs.Len() > 0 { + e := refs.Back() + cellRefs.PushBack(e.Value.(cellRef)) + refs.Remove(e) + } + refs.PushBack(cr) + continue + } + if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil { + return + } + e := refs.Back() + if e == nil { + cr.Sheet = sheet + refs.PushBack(cr) + continue + } + cellRanges.PushBack(cellRange{ + From: e.Value.(cellRef), + To: cr, + }) + refs.Remove(e) + } + if refs.Len() > 0 { + e := refs.Back() + cellRefs.PushBack(e.Value.(cellRef)) + refs.Remove(e) + } + + result, err = f.rangeResolver(cellRefs, cellRanges) + return +} + +// rangeResolver extract value as string from given reference and range list. +// This function will not ignore the empty cell. Note that the result of 3D +// range references may be different from Excel in some cases, for example, +// A1:A2:A2:B3 in Excel will include B2, but we wont. +func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) { + filter := map[string]string{} + // extract value from ranges + for temp := cellRanges.Front(); temp != nil; temp = temp.Next() { + cr := temp.Value.(cellRange) + if cr.From.Sheet != cr.To.Sheet { + err = errors.New(formulaErrorVALUE) + } + rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row} + sortCoordinates(rng) + for col := rng[0]; col <= rng[2]; col++ { + for row := rng[1]; row <= rng[3]; row++ { + var cell string + if cell, err = CoordinatesToCellName(col, row); err != nil { + return + } + if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil { + return + } + } + } + } + // extract value from references + for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { + cr := temp.Value.(cellRef) + var cell string + if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil { + return + } + if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil { + return + } + } + + for _, val := range filter { + result = append(result, val) + } + return +} + +// callFuncByName calls the no error or only error return function with +// reflect by given receiver, name and parameters. +func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) { + function := reflect.ValueOf(receiver).MethodByName(name) + if function.IsValid() { + rt := function.Call(params) + if len(rt) == 0 { + return + } + if !rt[1].IsNil() { + err = rt[1].Interface().(error) + return + } + result = rt[0].Interface().(string) + return + } + err = fmt.Errorf("not support %s function", name) + return +} + +// Math and Trigonometric functions + +// SUM function adds together a supplied set of numbers and returns the sum of +// these values. The syntax of the function is: +// +// SUM(number1,[number2],...) +// +func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) { + var val float64 + var sum float64 + for !argsStack.Empty() { + token := argsStack.Pop().(efp.Token) + if token.TValue == "" { + continue + } + val, err = strconv.ParseFloat(token.TValue, 64) + if err != nil { + return + } + sum += val + } + result = fmt.Sprintf("%g", sum) + return +} + +// PRODUCT function returns the product (multiplication) of a supplied set of numerical values. +// The syntax of the function is: +// +// PRODUCT(number1,[number2],...) +// +func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) { + var ( + val float64 + product float64 = 1 + ) + for !argsStack.Empty() { + token := argsStack.Pop().(efp.Token) + if token.TValue == "" { + continue + } + val, err = strconv.ParseFloat(token.TValue, 64) + if err != nil { + return + } + product = product * val + } + result = fmt.Sprintf("%g", product) + return +} + +// PRODUCT function calculates a given number, raised to a supplied power. +// The syntax of the function is: +// +// POWER(number,power) +// +func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) { + if argsStack.Len() != 2 { + err = errors.New("POWER requires 2 numeric arguments") + return + } + var x, y float64 + y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + if err != nil { + return + } + x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + if err != nil { + return + } + if x == 0 && y == 0 { + err = errors.New(formulaErrorNUM) + return + } + if x == 0 && y < 0 { + err = errors.New(formulaErrorDIV) + return + } + result = fmt.Sprintf("%g", math.Pow(x, y)) + return +} + +// SQRT function calculates the positive square root of a supplied number. +// The syntax of the function is: +// +// SQRT(number) +// +func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) { + if argsStack.Len() != 1 { + err = errors.New("SQRT requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + if err != nil { + return + } + if val < 0 { + err = errors.New(formulaErrorNUM) + return + } + result = fmt.Sprintf("%g", math.Sqrt(val)) + return +} + +// QUOTIENT function returns the integer portion of a division between two supplied numbers. +// The syntax of the function is: +// +// QUOTIENT(numerator,denominator) +// +func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) { + if argsStack.Len() != 2 { + err = errors.New("QUOTIENT requires 2 numeric arguments") + return + } + var x, y float64 + y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + if err != nil { + return + } + x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + if err != nil { + return + } + if y == 0 { + err = errors.New(formulaErrorDIV) + return + } + result = fmt.Sprintf("%g", math.Trunc(x/y)) + return +} |