summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go605
1 files changed, 605 insertions, 0 deletions
diff --git a/calc.go b/calc.go
new file mode 100644
index 0000000..d962fd4
--- /dev/null
+++ b/calc.go
@@ -0,0 +1,605 @@
+// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
+// this source code is governed by a BSD-style license that can be found in
+// the LICENSE file.
+//
+// Package excelize providing a set of functions that allow you to write to
+// and read from XLSX / XLSM / XLTM files. Supports reading and writing
+// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
+// complex components by high compatibility, and provided streaming API for
+// generating or reading data from a worksheet with huge amounts of data. This
+// library needs Go version 1.10 or later.
+
+package excelize
+
+import (
+ "container/list"
+ "errors"
+ "fmt"
+ "math"
+ "reflect"
+ "strconv"
+ "strings"
+
+ "github.com/xuri/efp"
+)
+
+// Excel formula errors
+const (
+ formulaErrorDIV = "#DIV/0!"
+ formulaErrorNAME = "#NAME?"
+ formulaErrorNA = "#N/A"
+ formulaErrorNUM = "#NUM!"
+ formulaErrorVALUE = "#VALUE!"
+ formulaErrorREF = "#REF!"
+ formulaErrorNULL = "#NULL"
+ formulaErrorSPILL = "#SPILL!"
+ formulaErrorCALC = "#CALC!"
+ formulaErrorGETTINGDATA = "#GETTING_DATA"
+)
+
+// cellRef defines the structure of a cell reference
+type cellRef struct {
+ Col int
+ Row int
+ Sheet string
+}
+
+// cellRef defines the structure of a cell range
+type cellRange struct {
+ From cellRef
+ To cellRef
+}
+
+type formulaFuncs struct{}
+
+// CalcCellValue provides a function to get calculated cell value. This
+// feature is currently in beta. Array formula, table formula and some other
+// formulas are not supported currently.
+func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
+ var (
+ formula string
+ token efp.Token
+ )
+ if formula, err = f.GetCellFormula(sheet, cell); err != nil {
+ return
+ }
+ ps := efp.ExcelParser()
+ tokens := ps.Parse(formula)
+ if tokens == nil {
+ return
+ }
+ if token, err = f.evalInfixExp(sheet, tokens); err != nil {
+ return
+ }
+ result = token.TValue
+ return
+}
+
+// getPriority calculate arithmetic operator priority.
+func getPriority(token efp.Token) (pri int) {
+ var priority = map[string]int{
+ "*": 2,
+ "/": 2,
+ "+": 1,
+ "-": 1,
+ }
+ pri, _ = priority[token.TValue]
+ if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
+ pri = 3
+ }
+ if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
+ pri = 0
+ }
+ return
+}
+
+// evalInfixExp evaluate syntax analysis by given infix expression after
+// lexical analysis. Evaluate an infix expression containing formulas by
+// stacks:
+//
+// opd - Operand
+// opt - Operator
+// opf - Operation formula
+// opfd - Operand of the operation formula
+// opft - Operator of the operation formula
+// args - Arguments of the operation formula
+//
+func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
+ var err error
+ opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
+ for i := 0; i < len(tokens); i++ {
+ token := tokens[i]
+
+ // out of function stack
+ if opfStack.Len() == 0 {
+ if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
+ return efp.Token{}, err
+ }
+ }
+
+ // function start
+ if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
+ opfStack.Push(token)
+ continue
+ }
+
+ // in function stack, walk 2 token at once
+ if opfStack.Len() > 0 {
+ var nextToken efp.Token
+ if i+1 < len(tokens) {
+ nextToken = tokens[i+1]
+ }
+
+ // current token is args or range, skip next token, order required: parse reference first
+ if token.TSubType == efp.TokenSubTypeRange {
+ if !opftStack.Empty() {
+ // parse reference: must reference at here
+ result, err := f.parseReference(sheet, token.TValue)
+ if err != nil {
+ return efp.Token{TValue: formulaErrorNAME}, err
+ }
+ if len(result) != 1 {
+ return efp.Token{}, errors.New(formulaErrorVALUE)
+ }
+ opfdStack.Push(efp.Token{
+ TType: efp.TokenTypeOperand,
+ TSubType: efp.TokenSubTypeNumber,
+ TValue: result[0],
+ })
+ continue
+ }
+ if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
+ // parse reference: reference or range at here
+ result, err := f.parseReference(sheet, token.TValue)
+ if err != nil {
+ return efp.Token{TValue: formulaErrorNAME}, err
+ }
+ for _, val := range result {
+ argsStack.Push(efp.Token{
+ TType: efp.TokenTypeOperand,
+ TSubType: efp.TokenSubTypeNumber,
+ TValue: val,
+ })
+ }
+ if len(result) == 0 {
+ return efp.Token{}, errors.New(formulaErrorVALUE)
+ }
+ continue
+ }
+ }
+
+ // check current token is opft
+ if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
+ return efp.Token{}, err
+ }
+
+ // current token is arg
+ if token.TType == efp.TokenTypeArgument {
+ for !opftStack.Empty() {
+ // calculate trigger
+ topOpt := opftStack.Peek().(efp.Token)
+ if err := calculate(opfdStack, topOpt); err != nil {
+ return efp.Token{}, err
+ }
+ opftStack.Pop()
+ }
+ if !opfdStack.Empty() {
+ argsStack.Push(opfdStack.Pop())
+ }
+ continue
+ }
+
+ // current token is function stop
+ if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
+ for !opftStack.Empty() {
+ // calculate trigger
+ topOpt := opftStack.Peek().(efp.Token)
+ if err := calculate(opfdStack, topOpt); err != nil {
+ return efp.Token{}, err
+ }
+ opftStack.Pop()
+ }
+
+ // push opfd to args
+ if opfdStack.Len() > 0 {
+ argsStack.Push(opfdStack.Pop())
+ }
+ // call formula function to evaluate
+ result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)})
+ if err != nil {
+ return efp.Token{}, err
+ }
+ opfStack.Pop()
+ if opfStack.Len() > 0 { // still in function stack
+ opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ } else {
+ opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ }
+ }
+ }
+ for optStack.Len() != 0 {
+ topOpt := optStack.Peek().(efp.Token)
+ if err = calculate(opdStack, topOpt); err != nil {
+ return efp.Token{}, err
+ }
+ optStack.Pop()
+ }
+ return opdStack.Peek().(efp.Token), err
+}
+
+// calculate evaluate basic arithmetic operations.
+func calculate(opdStack *Stack, opt efp.Token) error {
+ if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
+ opd := opdStack.Pop().(efp.Token)
+ opdVal, err := strconv.ParseFloat(opd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ result := 0 - opdVal
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ if opt.TValue == "+" {
+ rOpd := opdStack.Pop().(efp.Token)
+ lOpd := opdStack.Pop().(efp.Token)
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ result := lOpdVal + rOpdVal
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
+ rOpd := opdStack.Pop().(efp.Token)
+ lOpd := opdStack.Pop().(efp.Token)
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ result := lOpdVal - rOpdVal
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ if opt.TValue == "*" {
+ rOpd := opdStack.Pop().(efp.Token)
+ lOpd := opdStack.Pop().(efp.Token)
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ result := lOpdVal * rOpdVal
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ if opt.TValue == "/" {
+ rOpd := opdStack.Pop().(efp.Token)
+ lOpd := opdStack.Pop().(efp.Token)
+ lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
+ if err != nil {
+ return err
+ }
+ result := lOpdVal / rOpdVal
+ if rOpdVal == 0 {
+ return errors.New(formulaErrorDIV)
+ }
+ opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
+ }
+ return nil
+}
+
+// parseToken parse basic arithmetic operator priority and evaluate based on
+// operators and operands.
+func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
+ // parse reference: must reference at here
+ if token.TSubType == efp.TokenSubTypeRange {
+ result, err := f.parseReference(sheet, token.TValue)
+ if err != nil {
+ return errors.New(formulaErrorNAME)
+ }
+ if len(result) != 1 {
+ return errors.New(formulaErrorVALUE)
+ }
+ token.TValue = result[0]
+ token.TType = efp.TokenTypeOperand
+ token.TSubType = efp.TokenSubTypeNumber
+ }
+ if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
+ if optStack.Len() == 0 {
+ optStack.Push(token)
+ } else {
+ tokenPriority := getPriority(token)
+ topOpt := optStack.Peek().(efp.Token)
+ topOptPriority := getPriority(topOpt)
+ if tokenPriority > topOptPriority {
+ optStack.Push(token)
+ } else {
+ for tokenPriority <= topOptPriority {
+ optStack.Pop()
+ if err := calculate(opdStack, topOpt); err != nil {
+ return err
+ }
+ if optStack.Len() > 0 {
+ topOpt = optStack.Peek().(efp.Token)
+ topOptPriority = getPriority(topOpt)
+ continue
+ }
+ break
+ }
+ optStack.Push(token)
+ }
+ }
+ }
+ if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
+ optStack.Push(token)
+ }
+ if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
+ for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
+ topOpt := optStack.Peek().(efp.Token)
+ if err := calculate(opdStack, topOpt); err != nil {
+ return err
+ }
+ optStack.Pop()
+ }
+ optStack.Pop()
+ }
+ // opd
+ if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
+ opdStack.Push(token)
+ }
+ return nil
+}
+
+// parseReference parse reference and extract values by given reference
+// characters and default sheet name.
+func (f *File) parseReference(sheet, reference string) (result []string, err error) {
+ reference = strings.Replace(reference, "$", "", -1)
+ refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
+ for _, ref := range strings.Split(reference, ":") {
+ tokens := strings.Split(ref, "!")
+ cr := cellRef{}
+ if len(tokens) == 2 { // have a worksheet name
+ cr.Sheet = tokens[0]
+ if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
+ return
+ }
+ if refs.Len() > 0 {
+ e := refs.Back()
+ cellRefs.PushBack(e.Value.(cellRef))
+ refs.Remove(e)
+ }
+ refs.PushBack(cr)
+ continue
+ }
+ if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
+ return
+ }
+ e := refs.Back()
+ if e == nil {
+ cr.Sheet = sheet
+ refs.PushBack(cr)
+ continue
+ }
+ cellRanges.PushBack(cellRange{
+ From: e.Value.(cellRef),
+ To: cr,
+ })
+ refs.Remove(e)
+ }
+ if refs.Len() > 0 {
+ e := refs.Back()
+ cellRefs.PushBack(e.Value.(cellRef))
+ refs.Remove(e)
+ }
+
+ result, err = f.rangeResolver(cellRefs, cellRanges)
+ return
+}
+
+// rangeResolver extract value as string from given reference and range list.
+// This function will not ignore the empty cell. Note that the result of 3D
+// range references may be different from Excel in some cases, for example,
+// A1:A2:A2:B3 in Excel will include B2, but we wont.
+func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) {
+ filter := map[string]string{}
+ // extract value from ranges
+ for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
+ cr := temp.Value.(cellRange)
+ if cr.From.Sheet != cr.To.Sheet {
+ err = errors.New(formulaErrorVALUE)
+ }
+ rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
+ sortCoordinates(rng)
+ for col := rng[0]; col <= rng[2]; col++ {
+ for row := rng[1]; row <= rng[3]; row++ {
+ var cell string
+ if cell, err = CoordinatesToCellName(col, row); err != nil {
+ return
+ }
+ if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
+ return
+ }
+ }
+ }
+ }
+ // extract value from references
+ for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
+ cr := temp.Value.(cellRef)
+ var cell string
+ if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
+ return
+ }
+ if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
+ return
+ }
+ }
+
+ for _, val := range filter {
+ result = append(result, val)
+ }
+ return
+}
+
+// callFuncByName calls the no error or only error return function with
+// reflect by given receiver, name and parameters.
+func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
+ function := reflect.ValueOf(receiver).MethodByName(name)
+ if function.IsValid() {
+ rt := function.Call(params)
+ if len(rt) == 0 {
+ return
+ }
+ if !rt[1].IsNil() {
+ err = rt[1].Interface().(error)
+ return
+ }
+ result = rt[0].Interface().(string)
+ return
+ }
+ err = fmt.Errorf("not support %s function", name)
+ return
+}
+
+// Math and Trigonometric functions
+
+// SUM function adds together a supplied set of numbers and returns the sum of
+// these values. The syntax of the function is:
+//
+// SUM(number1,[number2],...)
+//
+func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
+ var val float64
+ var sum float64
+ for !argsStack.Empty() {
+ token := argsStack.Pop().(efp.Token)
+ if token.TValue == "" {
+ continue
+ }
+ val, err = strconv.ParseFloat(token.TValue, 64)
+ if err != nil {
+ return
+ }
+ sum += val
+ }
+ result = fmt.Sprintf("%g", sum)
+ return
+}
+
+// PRODUCT function returns the product (multiplication) of a supplied set of numerical values.
+// The syntax of the function is:
+//
+// PRODUCT(number1,[number2],...)
+//
+func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
+ var (
+ val float64
+ product float64 = 1
+ )
+ for !argsStack.Empty() {
+ token := argsStack.Pop().(efp.Token)
+ if token.TValue == "" {
+ continue
+ }
+ val, err = strconv.ParseFloat(token.TValue, 64)
+ if err != nil {
+ return
+ }
+ product = product * val
+ }
+ result = fmt.Sprintf("%g", product)
+ return
+}
+
+// PRODUCT function calculates a given number, raised to a supplied power.
+// The syntax of the function is:
+//
+// POWER(number,power)
+//
+func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
+ if argsStack.Len() != 2 {
+ err = errors.New("POWER requires 2 numeric arguments")
+ return
+ }
+ var x, y float64
+ y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ if x == 0 && y == 0 {
+ err = errors.New(formulaErrorNUM)
+ return
+ }
+ if x == 0 && y < 0 {
+ err = errors.New(formulaErrorDIV)
+ return
+ }
+ result = fmt.Sprintf("%g", math.Pow(x, y))
+ return
+}
+
+// SQRT function calculates the positive square root of a supplied number.
+// The syntax of the function is:
+//
+// SQRT(number)
+//
+func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
+ if argsStack.Len() != 1 {
+ err = errors.New("SQRT requires 1 numeric arguments")
+ return
+ }
+ var val float64
+ val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ if val < 0 {
+ err = errors.New(formulaErrorNUM)
+ return
+ }
+ result = fmt.Sprintf("%g", math.Sqrt(val))
+ return
+}
+
+// QUOTIENT function returns the integer portion of a division between two supplied numbers.
+// The syntax of the function is:
+//
+// QUOTIENT(numerator,denominator)
+//
+func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) {
+ if argsStack.Len() != 2 {
+ err = errors.New("QUOTIENT requires 2 numeric arguments")
+ return
+ }
+ var x, y float64
+ y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
+ if err != nil {
+ return
+ }
+ if y == 0 {
+ err = errors.New(formulaErrorDIV)
+ return
+ }
+ result = fmt.Sprintf("%g", math.Trunc(x/y))
+ return
+}