summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go179
1 files changed, 96 insertions, 83 deletions
diff --git a/calc.go b/calc.go
index ecd5f0c..eed0f5d 100644
--- a/calc.go
+++ b/calc.go
@@ -344,8 +344,7 @@ func newErrorFormulaArg(formulaError, msg string) formulaArg {
//
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
var err error
- opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- argsList := list.New()
+ opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
for i := 0; i < len(tokens); i++ {
token := tokens[i]
@@ -359,6 +358,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
// function start
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
opfStack.Push(token)
+ argsStack.Push(list.New().Init())
continue
}
@@ -396,7 +396,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
if result.Type == ArgUnknown {
return efp.Token{}, errors.New(formulaErrorVALUE)
}
- argsList.PushBack(result)
+ argsStack.Peek().(*list.List).PushBack(result)
continue
}
}
@@ -417,7 +417,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
opftStack.Pop()
}
if !opfdStack.Empty() {
- argsList.PushBack(formulaArg{
+ argsStack.Peek().(*list.List).PushBack(formulaArg{
String: opfdStack.Pop().(efp.Token).TValue,
Type: ArgString,
})
@@ -431,7 +431,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
// current token is text
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
- argsList.PushBack(formulaArg{
+ argsStack.Peek().(*list.List).PushBack(formulaArg{
String: token.TValue,
Type: ArgString,
})
@@ -450,26 +450,26 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
// push opfd to args
if opfdStack.Len() > 0 {
- argsList.PushBack(formulaArg{
+ argsStack.Peek().(*list.List).PushBack(formulaArg{
String: opfdStack.Pop().(efp.Token).TValue,
Type: ArgString,
})
}
- // call formula function to evaluate
+
arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
- []reflect.Value{reflect.ValueOf(argsList)})
+ []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
if arg.Type == ArgError {
return efp.Token{}, errors.New(arg.Value())
}
- argsList.Init()
+ argsStack.Pop()
opfStack.Pop()
if opfStack.Len() > 0 { // still in function stack
if nextToken.TType == efp.TokenTypeOperatorInfix {
// mathematics calculate in formula function
opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
} else {
- argsList.PushBack(arg)
+ argsStack.Peek().(*list.List).PushBack(arg)
}
} else {
opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
@@ -1220,15 +1220,15 @@ func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
}
- x, err := strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ x := argsList.Back().Value.(formulaArg).ToNumber()
+ if x.Type == ArgError {
+ return x
}
- y, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ y := argsList.Front().Value.(formulaArg).ToNumber()
+ if y.Type == ArgError {
+ return y
}
- return newNumberFormulaArg(math.Atan2(x, y))
+ return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
}
// BASE function converts a number into a supplied base (radix), and returns a
@@ -1243,16 +1243,17 @@ func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
}
- var number float64
- var radix, minLength int
+ var minLength int
var err error
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
+ if radix.Type == ArgError {
+ return radix
}
- if radix < 2 || radix > 36 {
+ if int(radix.Number) < 2 || int(radix.Number) > 36 {
return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
}
if argsList.Len() > 2 {
@@ -1260,7 +1261,7 @@ func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
}
- result := strconv.FormatInt(int64(number), radix)
+ result := strconv.FormatInt(int64(number.Number), int(radix.Number))
if len(result) < minLength {
result = strings.Repeat("0", minLength-len(result)) + result
}
@@ -1280,18 +1281,20 @@ func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
}
number, significance, res := 0.0, 1.0, 0.0
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
+ number = n.Number
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Back().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
}
if significance < 0 && number > 0 {
return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
@@ -1319,25 +1322,30 @@ func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
}
number, significance, mode := 0.0, 1.0, 1.0
- var err error
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
+ number = n.Number
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Front().Next().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number))
}
if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ m := argsList.Back().Value.(formulaArg).ToNumber()
+ if m.Type == ArgError {
+ return m
}
+ mode = m.Number
}
val, res := math.Modf(number / significance)
if res != 0 {
@@ -1364,11 +1372,11 @@ func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
}
number, significance := 0.0, 1.0
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
+ number = n.Number
if number < 0 {
significance = -1
}
@@ -1376,13 +1384,14 @@ func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
return newNumberFormulaArg(math.Ceil(number))
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Back().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
- return newStringFormulaArg("0")
+ return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number / significance)
@@ -1404,19 +1413,22 @@ func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
}
number, chosen, val := 0.0, 0.0, 1.0
- var err error
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
- if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number = n.Number
+ c := argsList.Back().Value.(formulaArg).ToNumber()
+ if c.Type == ArgError {
+ return c
}
+ chosen = c.Number
number, chosen = math.Trunc(number), math.Trunc(chosen)
if chosen > number {
return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
}
if chosen == number || chosen == 0 {
- return newStringFormulaArg("1")
+ return newNumberFormulaArg(1)
}
for c := float64(1); c <= chosen; c++ {
val *= (number + 1 - c) / c
@@ -1434,21 +1446,22 @@ func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
}
var number, chosen float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
- chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number = n.Number
+ c := argsList.Back().Value.(formulaArg).ToNumber()
+ if c.Type == ArgError {
+ return c
}
+ chosen = c.Number
number, chosen = math.Trunc(number), math.Trunc(chosen)
if number < chosen {
return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
}
if number == 0 {
- return newStringFormulaArg("0")
+ return newNumberFormulaArg(number)
}
args := list.New()
args.PushBack(formulaArg{
@@ -1471,11 +1484,11 @@ func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- return newNumberFormulaArg(math.Cos(val))
+ return newNumberFormulaArg(math.Cos(val.Number))
}
// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
@@ -1487,11 +1500,11 @@ func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- return newNumberFormulaArg(math.Cosh(val))
+ return newNumberFormulaArg(math.Cosh(val.Number))
}
// COT function calculates the cotangent of a given angle. The syntax of the
@@ -1503,14 +1516,14 @@ func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val == 0 {
+ if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(math.Tan(val))
+ return newNumberFormulaArg(1 / math.Tan(val.Number))
}
// COTH function calculates the hyperbolic cotangent (coth) of a supplied
@@ -1522,14 +1535,14 @@ func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val == 0 {
+ if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(math.Tanh(val))
+ return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
}
// CSC function calculates the cosecant of a given angle. The syntax of the
@@ -1541,14 +1554,14 @@ func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val == 0 {
+ if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(1 / math.Sin(val))
+ return newNumberFormulaArg(1 / math.Sin(val.Number))
}
// CSCH function calculates the hyperbolic cosecant (csch) of a supplied