diff options
Diffstat (limited to 'calc.go')
-rw-r--r-- | calc.go | 179 |
1 files changed, 96 insertions, 83 deletions
@@ -344,8 +344,7 @@ func newErrorFormulaArg(formulaError, msg string) formulaArg { // func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { var err error - opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack() - argsList := list.New() + opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack() for i := 0; i < len(tokens); i++ { token := tokens[i] @@ -359,6 +358,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) // function start if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart { opfStack.Push(token) + argsStack.Push(list.New().Init()) continue } @@ -396,7 +396,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) if result.Type == ArgUnknown { return efp.Token{}, errors.New(formulaErrorVALUE) } - argsList.PushBack(result) + argsStack.Peek().(*list.List).PushBack(result) continue } } @@ -417,7 +417,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) opftStack.Pop() } if !opfdStack.Empty() { - argsList.PushBack(formulaArg{ + argsStack.Peek().(*list.List).PushBack(formulaArg{ String: opfdStack.Pop().(efp.Token).TValue, Type: ArgString, }) @@ -431,7 +431,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) // current token is text if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText { - argsList.PushBack(formulaArg{ + argsStack.Peek().(*list.List).PushBack(formulaArg{ String: token.TValue, Type: ArgString, }) @@ -450,26 +450,26 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) // push opfd to args if opfdStack.Len() > 0 { - argsList.PushBack(formulaArg{ + argsStack.Peek().(*list.List).PushBack(formulaArg{ String: opfdStack.Pop().(efp.Token).TValue, Type: ArgString, }) } - // call formula function to evaluate + arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer( "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue), - []reflect.Value{reflect.ValueOf(argsList)}) + []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))}) if arg.Type == ArgError { return efp.Token{}, errors.New(arg.Value()) } - argsList.Init() + argsStack.Pop() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack if nextToken.TType == efp.TokenTypeOperatorInfix { // mathematics calculate in formula function opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } else { - argsList.PushBack(arg) + argsStack.Peek().(*list.List).PushBack(arg) } } else { opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) @@ -1220,15 +1220,15 @@ func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments") } - x, err := strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + x := argsList.Back().Value.(formulaArg).ToNumber() + if x.Type == ArgError { + return x } - y, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + y := argsList.Front().Value.(formulaArg).ToNumber() + if y.Type == ArgError { + return y } - return newNumberFormulaArg(math.Atan2(x, y)) + return newNumberFormulaArg(math.Atan2(x.Number, y.Number)) } // BASE function converts a number into a supplied base (radix), and returns a @@ -1243,16 +1243,17 @@ func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg { if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments") } - var number float64 - var radix, minLength int + var minLength int var err error - if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + number := argsList.Front().Value.(formulaArg).ToNumber() + if number.Type == ArgError { + return number } - if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + radix := argsList.Front().Next().Value.(formulaArg).ToNumber() + if radix.Type == ArgError { + return radix } - if radix < 2 || radix > 36 { + if int(radix.Number) < 2 || int(radix.Number) > 36 { return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36") } if argsList.Len() > 2 { @@ -1260,7 +1261,7 @@ func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } - result := strconv.FormatInt(int64(number), radix) + result := strconv.FormatInt(int64(number.Number), int(radix.Number)) if len(result) < minLength { result = strings.Repeat("0", minLength-len(result)) + result } @@ -1280,18 +1281,20 @@ func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments") } number, significance, res := 0.0, 1.0, 0.0 - var err error - number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + n := argsList.Front().Value.(formulaArg).ToNumber() + if n.Type == ArgError { + return n } + number = n.Number if number < 0 { significance = -1 } if argsList.Len() > 1 { - if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + s := argsList.Back().Value.(formulaArg).ToNumber() + if s.Type == ArgError { + return s } + significance = s.Number } if significance < 0 && number > 0 { return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid") @@ -1319,25 +1322,30 @@ func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments") } number, significance, mode := 0.0, 1.0, 1.0 - var err error - if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + n := argsList.Front().Value.(formulaArg).ToNumber() + if n.Type == ArgError { + return n } + number = n.Number if number < 0 { significance = -1 } if argsList.Len() > 1 { - if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + s := argsList.Front().Next().Value.(formulaArg).ToNumber() + if s.Type == ArgError { + return s } + significance = s.Number } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 2 { - if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + m := argsList.Back().Value.(formulaArg).ToNumber() + if m.Type == ArgError { + return m } + mode = m.Number } val, res := math.Modf(number / significance) if res != 0 { @@ -1364,11 +1372,11 @@ func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments") } number, significance := 0.0, 1.0 - var err error - number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + n := argsList.Front().Value.(formulaArg).ToNumber() + if n.Type == ArgError { + return n } + number = n.Number if number < 0 { significance = -1 } @@ -1376,13 +1384,14 @@ func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 1 { - if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { - err = errors.New(formulaErrorVALUE) - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + s := argsList.Back().Value.(formulaArg).ToNumber() + if s.Type == ArgError { + return s } + significance = s.Number significance = math.Abs(significance) if significance == 0 { - return newStringFormulaArg("0") + return newNumberFormulaArg(significance) } } val, res := math.Modf(number / significance) @@ -1404,19 +1413,22 @@ func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument") } number, chosen, val := 0.0, 0.0, 1.0 - var err error - if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + n := argsList.Front().Value.(formulaArg).ToNumber() + if n.Type == ArgError { + return n } - if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + number = n.Number + c := argsList.Back().Value.(formulaArg).ToNumber() + if c.Type == ArgError { + return c } + chosen = c.Number number, chosen = math.Trunc(number), math.Trunc(chosen) if chosen > number { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen") } if chosen == number || chosen == 0 { - return newStringFormulaArg("1") + return newNumberFormulaArg(1) } for c := float64(1); c <= chosen; c++ { val *= (number + 1 - c) / c @@ -1434,21 +1446,22 @@ func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument") } var number, chosen float64 - var err error - number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + n := argsList.Front().Value.(formulaArg).ToNumber() + if n.Type == ArgError { + return n } - chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + number = n.Number + c := argsList.Back().Value.(formulaArg).ToNumber() + if c.Type == ArgError { + return c } + chosen = c.Number number, chosen = math.Trunc(number), math.Trunc(chosen) if number < chosen { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen") } if number == 0 { - return newStringFormulaArg("0") + return newNumberFormulaArg(number) } args := list.New() args.PushBack(formulaArg{ @@ -1471,11 +1484,11 @@ func (fn *formulaFuncs) COS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + val := argsList.Front().Value.(formulaArg).ToNumber() + if val.Type == ArgError { + return val } - return newNumberFormulaArg(math.Cos(val)) + return newNumberFormulaArg(math.Cos(val.Number)) } // COSH function calculates the hyperbolic cosine (cosh) of a supplied number. @@ -1487,11 +1500,11 @@ func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + val := argsList.Front().Value.(formulaArg).ToNumber() + if val.Type == ArgError { + return val } - return newNumberFormulaArg(math.Cosh(val)) + return newNumberFormulaArg(math.Cosh(val.Number)) } // COT function calculates the cotangent of a given angle. The syntax of the @@ -1503,14 +1516,14 @@ func (fn *formulaFuncs) COT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + val := argsList.Front().Value.(formulaArg).ToNumber() + if val.Type == ArgError { + return val } - if val == 0 { + if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } - return newNumberFormulaArg(math.Tan(val)) + return newNumberFormulaArg(1 / math.Tan(val.Number)) } // COTH function calculates the hyperbolic cotangent (coth) of a supplied @@ -1522,14 +1535,14 @@ func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + val := argsList.Front().Value.(formulaArg).ToNumber() + if val.Type == ArgError { + return val } - if val == 0 { + if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } - return newNumberFormulaArg(math.Tanh(val)) + return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number))) } // CSC function calculates the cosecant of a given angle. The syntax of the @@ -1541,14 +1554,14 @@ func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + val := argsList.Front().Value.(formulaArg).ToNumber() + if val.Type == ArgError { + return val } - if val == 0 { + if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } - return newNumberFormulaArg(1 / math.Sin(val)) + return newNumberFormulaArg(1 / math.Sin(val.Number)) } // CSCH function calculates the hyperbolic cosecant (csch) of a supplied |