summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go80
1 files changed, 78 insertions, 2 deletions
diff --git a/calc.go b/calc.go
index 4d2bdcc..e3e7c4d 100644
--- a/calc.go
+++ b/calc.go
@@ -294,11 +294,15 @@ var tokenPriority = map[string]int{
// IF
// IFERROR
// IMABS
+// IMAGINARY
+// IMARGUMENT
+// IMCONJUGATE
// IMCOS
// IMCOSH
// IMCOT
// IMCSC
// IMCSCH
+// IMDIV
// IMEXP
// IMLN
// IMLOG10
@@ -1712,13 +1716,61 @@ func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
}
- inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newNumberFormulaArg(cmplx.Abs(inumber))
}
+// IMAGINARY function returns the imaginary coefficient of a supplied complex
+// number. The syntax of the function is:
+//
+// IMAGINARY(inumber)
+//
+func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
+ }
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
+ if err != nil {
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
+ }
+ return newNumberFormulaArg(imag(inumber))
+}
+
+// IMARGUMENT function returns the phase (also called the argument) of a
+// supplied complex number. The syntax of the function is:
+//
+// IMARGUMENT(inumber)
+//
+func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
+ }
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
+ if err != nil {
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
+ }
+ return newNumberFormulaArg(cmplx.Phase(inumber))
+}
+
+// IMCONJUGATE function returns the complex conjugate of a supplied complex
+// number. The syntax of the function is:
+//
+// IMCONJUGATE(inumber)
+//
+func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
+ }
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
+ if err != nil {
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
+ }
+ return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
+}
+
// IMCOS function returns the cosine of a supplied complex number. The syntax
// of the function is:
//
@@ -1728,7 +1780,7 @@ func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
}
- inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
@@ -1807,6 +1859,30 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
+// IMDIV function calculates the quotient of two complex numbers (i.e. divides
+// one complex number by another). The syntax of the function is:
+//
+// IMDIV(inumber1,inumber2)
+//
+func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
+ if argsList.Len() != 2 {
+ return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
+ }
+ inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
+ if err != nil {
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
+ }
+ inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
+ if err != nil {
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
+ }
+ num := inumber1 / inumber2
+ if cmplx.IsInf(num) {
+ return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
+ }
+ return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
+}
+
// IMEXP function returns the exponential of a supplied complex number. The
// syntax of the function is:
//