diff options
Diffstat (limited to 'calc.go')
-rw-r--r-- | calc.go | 144 |
1 files changed, 98 insertions, 46 deletions
@@ -111,6 +111,12 @@ type formulaArg struct { func (fa formulaArg) Value() (value string) { switch fa.Type { case ArgNumber: + if fa.Boolean { + if fa.Number == 0 { + return "FALSE" + } + return "TRUE" + } return fmt.Sprintf("%g", fa.Number) case ArgString: return fa.String @@ -120,6 +126,22 @@ func (fa formulaArg) Value() (value string) { return } +// ToNumber returns a formula argument with number data type. +func (fa formulaArg) ToNumber() formulaArg { + var n float64 + var err error + switch fa.Type { + case ArgString: + n, err = strconv.ParseFloat(fa.String, 64) + if err != nil { + return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + } + case ArgNumber: + n = fa.Number + } + return newNumberFormulaArg(n) +} + // formulaFuncs is the type of the formula functions. type formulaFuncs struct{} @@ -274,6 +296,9 @@ func getPriority(token efp.Token) (pri int) { // newNumberFormulaArg constructs a number formula argument. func newNumberFormulaArg(n float64) formulaArg { + if math.IsNaN(n) { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } return formulaArg{Type: ArgNumber, Number: n} } @@ -282,6 +307,20 @@ func newStringFormulaArg(s string) formulaArg { return formulaArg{Type: ArgString, String: s} } +// newMatrixFormulaArg constructs a matrix formula argument. +func newMatrixFormulaArg(m [][]formulaArg) formulaArg { + return formulaArg{Type: ArgMatrix, Matrix: m} +} + +// newBoolFormulaArg constructs a boolean formula argument. +func newBoolFormulaArg(b bool) formulaArg { + var n float64 + if b { + n = 1 + } + return formulaArg{Type: ArgNumber, Number: n, Boolean: true} +} + // newErrorFormulaArg create an error formula argument of a given type with a specified error message. func newErrorFormulaArg(formulaError, msg string) formulaArg { return formulaArg{Type: ArgError, String: formulaError, Error: msg} @@ -426,7 +465,12 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) argsList.Init() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack - opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + if nextToken.TType == efp.TokenTypeOperatorInfix { + // mathematics calculate in formula function + opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) + } else { + argsList.PushBack(arg) + } } else { opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } @@ -994,11 +1038,11 @@ func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Abs(val)) + return newNumberFormulaArg(math.Abs(arg.Number)) } // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given @@ -1011,11 +1055,11 @@ func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Acos(val)) + return newNumberFormulaArg(math.Acos(arg.Number)) } // ACOSH function calculates the inverse hyperbolic cosine of a supplied number. @@ -1027,11 +1071,11 @@ func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Acosh(val)) + return newNumberFormulaArg(math.Acosh(arg.Number)) } // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a @@ -1044,11 +1088,11 @@ func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Pi/2 - math.Atan(val)) + return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number)) } // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied @@ -1060,11 +1104,11 @@ func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Atanh(1 / val)) + return newNumberFormulaArg(math.Atanh(1 / arg.Number)) } // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax @@ -1110,11 +1154,11 @@ func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Asin(val)) + return newNumberFormulaArg(math.Asin(arg.Number)) } // ASINH function calculates the inverse hyperbolic sine of a supplied number. @@ -1126,11 +1170,11 @@ func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Asinh(val)) + return newNumberFormulaArg(math.Asinh(arg.Number)) } // ATAN function calculates the arctangent (i.e. the inverse tangent) of a @@ -1143,11 +1187,11 @@ func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Atan(val)) + return newNumberFormulaArg(math.Atan(arg.Number)) } // ATANH function calculates the inverse hyperbolic tangent of a supplied @@ -1159,11 +1203,11 @@ func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument") } - val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) - if err != nil { - return newErrorFormulaArg(formulaErrorVALUE, err.Error()) + arg := argsList.Front().Value.(formulaArg).ToNumber() + if arg.Type == ArgError { + return arg } - return newNumberFormulaArg(math.Atanh(val)) + return newNumberFormulaArg(math.Atanh(arg.Number)) } // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a @@ -2185,19 +2229,19 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) { if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } - matrix := make([][]float64, 0, dimension) + matrix := make([][]formulaArg, 0, dimension) for i := 0; i < dimension; i++ { - row := make([]float64, dimension) + row := make([]formulaArg, dimension) for j := 0; j < dimension; j++ { if i == j { - row[j] = float64(1.0) + row[j] = newNumberFormulaArg(float64(1.0)) } else { - row[j] = float64(0.0) + row[j] = newNumberFormulaArg(float64(0.0)) } } matrix = append(matrix, row) } - return + return newMatrixFormulaArg(matrix) } // ODD function ounds a supplied number away from zero (i.e. rounds a positive @@ -2704,6 +2748,8 @@ func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sum += val + case ArgNumber: + sum += token.Number case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { @@ -3173,7 +3219,7 @@ func (fn *formulaFuncs) AND(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } - return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(and))) + return newBoolFormulaArg(and) } // OR function tests a number of supplied conditions and returns either TRUE @@ -3380,7 +3426,7 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() == 1 { - return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(cond))) + return newBoolFormulaArg(cond) } if cond { return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String) @@ -3399,7 +3445,6 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg { // // CHOOSE(index_num,value1,[value2],...) // -// TODO: resolve range choose. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments") @@ -3415,5 +3460,12 @@ func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg { for i := 0; i < idx; i++ { arg = arg.Next() } - return newStringFormulaArg(arg.Value.(formulaArg).String) + var result formulaArg + switch arg.Value.(formulaArg).Type { + case ArgString: + result = newStringFormulaArg(arg.Value.(formulaArg).String) + case ArgMatrix: + result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix) + } + return result } |