summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go278
1 files changed, 267 insertions, 11 deletions
diff --git a/calc.go b/calc.go
index 33c504d..72ed876 100644
--- a/calc.go
+++ b/calc.go
@@ -249,9 +249,13 @@ var tokenPriority = map[string]int{
// FACT
// FACTDOUBLE
// FALSE
+// FISHER
+// FISHERINV
// FLOOR
// FLOOR.MATH
// FLOOR.PRECISE
+// GAMMA
+// GAMMALN
// GCD
// HLOOKUP
// IF
@@ -278,6 +282,8 @@ var tokenPriority = map[string]int{
// MAX
// MDETERM
// MEDIAN
+// MIN
+// MINA
// MOD
// MROUND
// MULTINOMIAL
@@ -286,6 +292,7 @@ var tokenPriority = map[string]int{
// NOT
// ODD
// OR
+// PERMUT
// PI
// POWER
// PRODUCT
@@ -295,6 +302,7 @@ var tokenPriority = map[string]int{
// RAND
// RANDBETWEEN
// REPT
+// ROMAN
// ROUND
// ROUNDDOWN
// ROUNDUP
@@ -1798,7 +1806,7 @@ func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
+ return newNumberFormulaArg(fact(number.Number))
}
// FACTDOUBLE function returns the double factorial of a supplied number. The
@@ -2552,7 +2560,8 @@ func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
if top.Number < bottom.Number {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
+ num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
+ return newNumberFormulaArg(float64(num + int64(bottom.Number)))
}
// romanNumerals defined a numeral system that originated in ancient Rome and
@@ -2563,11 +2572,34 @@ type romanNumerals struct {
s string
}
-var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
+var romanTable = [][]romanNumerals{
+ {
+ {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
+ {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
+ },
+ {
+ {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
+ {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
+ {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
+ },
+ {
+ {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
+ {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
+ {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
+ },
+ {
+ {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
+ {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
+ {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
+ {5, "V"}, {4, "IV"}, {1, "I"},
+ },
+ {
+ {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
+ {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
+ {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
+ {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
+ },
+}
// ROMAN function converts an arabic number to Roman. I.e. for a supplied
// integer, the function returns a text string depicting the roman numeral
@@ -3191,6 +3223,112 @@ func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
return newNumberFormulaArg(float64(count))
}
+// FISHER function calculates the Fisher Transformation for a supplied value.
+// The syntax of the function is:
+//
+// FISHER(x)
+//
+func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
+ }
+ token := argsList.Front().Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ arg := token.ToNumber()
+ if arg.Type == ArgNumber {
+ if arg.Number <= -1 || arg.Number >= 1 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
+ }
+ case ArgNumber:
+ if token.Number <= -1 || token.Number >= 1 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
+ }
+ return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
+}
+
+// FISHERINV function calculates the inverse of the Fisher Transformation and
+// returns a value between -1 and +1. The syntax of the function is:
+//
+// FISHERINV(y)
+//
+func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
+ }
+ token := argsList.Front().Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ arg := token.ToNumber()
+ if arg.Type == ArgNumber {
+ return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
+ }
+ case ArgNumber:
+ return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
+ }
+ return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
+}
+
+// GAMMA function returns the value of the Gamma Function, Γ(n), for a
+// specified number, n. The syntax of the function is:
+//
+// GAMMA(number)
+//
+func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
+ }
+ token := argsList.Front().Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ arg := token.ToNumber()
+ if arg.Type == ArgNumber {
+ if arg.Number <= 0 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(math.Gamma(arg.Number))
+ }
+ case ArgNumber:
+ if token.Number <= 0 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(math.Gamma(token.Number))
+ }
+ return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
+}
+
+// GAMMALN function returns the natural logarithm of the Gamma Function, Γ
+// (n). The syntax of the function is:
+//
+// GAMMALN(x)
+//
+func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
+ if argsList.Len() != 1 {
+ return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
+ }
+ token := argsList.Front().Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ arg := token.ToNumber()
+ if arg.Type == ArgNumber {
+ if arg.Number <= 0 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
+ }
+ case ArgNumber:
+ if token.Number <= 0 {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
+ }
+ return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
+}
+
// MAX function returns the largest value from a supplied set of numeric
// values. The syntax of the function is:
//
@@ -3203,7 +3341,10 @@ func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
return fn.max(false, argsList)
}
-// MAXA function returns the largest value from a supplied set of numeric values, while counting text and the logical value FALSE as the value 0 and counting the logical value TRUE as the value 1. The syntax of the function is:
+// MAXA function returns the largest value from a supplied set of numeric
+// values, while counting text and the logical value FALSE as the value 0 and
+// counting the logical value TRUE as the value 1. The syntax of the function
+// is:
//
// MAXA(number1,[number2],...)
//
@@ -3317,6 +3458,112 @@ func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
return newNumberFormulaArg(median)
}
+// MIN function returns the smallest value from a supplied set of numeric
+// values. The syntax of the function is:
+//
+// MIN(number1,[number2],...)
+//
+func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
+ if argsList.Len() == 0 {
+ return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
+ }
+ return fn.min(false, argsList)
+}
+
+// MINA function returns the smallest value from a supplied set of numeric
+// values, while counting text and the logical value FALSE as the value 0 and
+// counting the logical value TRUE as the value 1. The syntax of the function
+// is:
+//
+// MINA(number1,[number2],...)
+//
+func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
+ if argsList.Len() == 0 {
+ return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
+ }
+ return fn.min(true, argsList)
+}
+
+// min is an implementation of the formula function MIN and MINA.
+func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
+ min := math.MaxFloat64
+ for token := argsList.Front(); token != nil; token = token.Next() {
+ arg := token.Value.(formulaArg)
+ switch arg.Type {
+ case ArgString:
+ if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
+ continue
+ } else {
+ num := arg.ToBool()
+ if num.Type == ArgNumber && num.Number < min {
+ min = num.Number
+ continue
+ }
+ }
+ num := arg.ToNumber()
+ if num.Type != ArgError && num.Number < min {
+ min = num.Number
+ }
+ case ArgNumber:
+ if arg.Number < min {
+ min = arg.Number
+ }
+ case ArgList, ArgMatrix:
+ for _, row := range arg.ToList() {
+ switch row.Type {
+ case ArgString:
+ if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
+ continue
+ } else {
+ num := row.ToBool()
+ if num.Type == ArgNumber && num.Number < min {
+ min = num.Number
+ continue
+ }
+ }
+ num := row.ToNumber()
+ if num.Type != ArgError && num.Number < min {
+ min = num.Number
+ }
+ case ArgNumber:
+ if row.Number < min {
+ min = row.Number
+ }
+ }
+ }
+ case ArgError:
+ return arg
+ }
+ }
+ if min == math.MaxFloat64 {
+ min = 0
+ }
+ return newNumberFormulaArg(min)
+}
+
+// PERMUT function calculates the number of permutations of a specified number
+// of objects from a set of objects. The syntax of the function is:
+//
+// PERMUT(number,number_chosen)
+//
+func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
+ if argsList.Len() != 2 {
+ return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
+ }
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ chosen := argsList.Back().Value.(formulaArg).ToNumber()
+ if number.Type != ArgNumber {
+ return number
+ }
+ if chosen.Type != ArgNumber {
+ return chosen
+ }
+ if number.Number < chosen.Number {
+ return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
+ }
+ return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
+}
+
// Information Functions
// ISBLANK function tests if a specified cell is blank (empty) and if so,
@@ -3356,7 +3603,11 @@ func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
+ for _, errType := range []string{
+ formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
+ formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
+ formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
+ } {
if errType == token.String {
result = "TRUE"
}
@@ -3378,7 +3629,11 @@ func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
+ for _, errType := range []string{
+ formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
+ formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
+ formulaErrorCALC, formulaErrorGETTINGDATA,
+ } {
if errType == token.String {
result = "TRUE"
}
@@ -4413,5 +4668,6 @@ func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
}
- return newStringFormulaArg(strings.Replace(url.QueryEscape(argsList.Front().Value.(formulaArg).Value()), "+", "%20", -1))
+ token := argsList.Front().Value.(formulaArg).Value()
+ return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
}