summaryrefslogtreecommitdiff
path: root/calc.go
diff options
context:
space:
mode:
Diffstat (limited to 'calc.go')
-rw-r--r--calc.go583
1 files changed, 301 insertions, 282 deletions
diff --git a/calc.go b/calc.go
index eed0f5d..cb7d2f8 100644
--- a/calc.go
+++ b/calc.go
@@ -455,7 +455,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
Type: ArgString,
})
}
-
+ // call formula function to evaluate
arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
[]reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
@@ -1573,14 +1573,14 @@ func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val == 0 {
+ if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(1 / math.Sinh(val))
+ return newNumberFormulaArg(1 / math.Sinh(val.Number))
}
// DECIMAL function converts a text representation of a number in a specified
@@ -1618,14 +1618,14 @@ func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val == 0 {
+ if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(180.0 / math.Pi * val)
+ return newNumberFormulaArg(180.0 / math.Pi * val.Number)
}
// EVEN function rounds a supplied number away from zero (i.e. rounds a
@@ -1638,12 +1638,12 @@ func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- sign := math.Signbit(number)
- m, frac := math.Modf(number / 2)
+ sign := math.Signbit(number.Number)
+ m, frac := math.Modf(number.Number / 2)
val := m * 2
if frac != 0 {
if !sign {
@@ -1664,11 +1664,11 @@ func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number))))
+ return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
}
// fact returns the factorial of a supplied number.
@@ -1689,14 +1689,14 @@ func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number < 0 {
+ if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number))))
+ return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
}
// FACTDOUBLE function returns the double factorial of a supplied number. The
@@ -1709,14 +1709,14 @@ func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
}
val := 1.0
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number < 0 {
+ if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- for i := math.Trunc(number); i > 1; i -= 2 {
+ for i := math.Trunc(number.Number); i > 1; i -= 2 {
val *= i
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
@@ -1731,27 +1731,25 @@ func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
}
- var number, significance float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ significance := argsList.Back().Value.(formulaArg).ToNumber()
+ if significance.Type == ArgError {
+ return significance
}
- if significance < 0 && number >= 0 {
+ if significance.Number < 0 && number.Number >= 0 {
return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
}
- val := number
- val, res := math.Modf(val / significance)
+ val := number.Number
+ val, res := math.Modf(val / significance.Number)
if res != 0 {
- if number < 0 && res < 0 {
+ if number.Number < 0 && res < 0 {
val--
}
}
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance)))
+ return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
}
// FLOORMATH function rounds a supplied number down to a supplied multiple of
@@ -1766,30 +1764,33 @@ func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
}
- number, significance, mode := 0.0, 1.0, 1.0
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ significance, mode := 1.0, 1.0
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number < 0 {
+ if number.Number < 0 {
significance = -1
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Front().Next().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
}
if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number))
+ return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ m := argsList.Back().Value.(formulaArg).ToNumber()
+ if m.Type == ArgError {
+ return m
}
+ mode = m.Number
}
- val, res := math.Modf(number / significance)
- if res != 0 && number < 0 && mode > 0 {
+ val, res := math.Modf(number.Number / significance)
+ if res != 0 && number.Number < 0 && mode > 0 {
val--
}
return newNumberFormulaArg(val * significance)
@@ -1807,30 +1808,31 @@ func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
}
- var number, significance float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ var significance float64
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number < 0 {
+ if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number))
+ return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Back().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
- return newStringFormulaArg("0")
+ return newNumberFormulaArg(significance)
}
}
- val, res := math.Modf(number / significance)
+ val, res := math.Modf(number.Number / significance)
if res != 0 {
- if number < 0 {
+ if number.Number < 0 {
val--
}
}
@@ -1871,12 +1873,19 @@ func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).String
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ token := arg.Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ if token.String == "" {
+ continue
+ }
+ if val, err = strconv.ParseFloat(token.String, 64); err != nil {
+ return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ }
+ break
+ case ArgNumber:
+ val = token.Number
+ break
}
nums = append(nums, val)
}
@@ -1905,11 +1914,11 @@ func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- val, frac := math.Modf(number)
+ val, frac := math.Modf(number.Number)
if frac < 0 {
val--
}
@@ -1929,29 +1938,31 @@ func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
}
- var number, significance float64
- var err error
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ var significance float64
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number < 0 {
+ if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
+ return newNumberFormulaArg(math.Ceil(number.Number))
}
if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ s := argsList.Back().Value.(formulaArg).ToNumber()
+ if s.Type == ArgError {
+ return s
}
+ significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
- return newStringFormulaArg("0")
+ return newNumberFormulaArg(significance)
}
}
- val, res := math.Modf(number / significance)
+ val, res := math.Modf(number.Number / significance)
if res != 0 {
- if number > 0 {
+ if number.Number > 0 {
val++
}
}
@@ -1983,12 +1994,19 @@ func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).String
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ token := arg.Value.(formulaArg)
+ switch token.Type {
+ case ArgString:
+ if token.String == "" {
+ continue
+ }
+ if val, err = strconv.ParseFloat(token.String, 64); err != nil {
+ return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ }
+ break
+ case ArgNumber:
+ val = token.Number
+ break
}
nums = append(nums, val)
}
@@ -2017,11 +2035,11 @@ func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Log(number))
+ return newNumberFormulaArg(math.Log(number.Number))
}
// LOG function calculates the logarithm of a given number, to a supplied
@@ -2036,18 +2054,19 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
}
- number, base := 0.0, 10.0
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ base := 10.0
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
if argsList.Len() > 1 {
- if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ b := argsList.Back().Value.(formulaArg).ToNumber()
+ if b.Type == ArgError {
+ return b
}
+ base = b.Number
}
- if number == 0 {
+ if number.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
}
if base == 0 {
@@ -2056,7 +2075,7 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
if base == 1 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(math.Log(number) / math.Log(base))
+ return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
}
// LOG10 function calculates the base 10 logarithm of a given number. The
@@ -2068,11 +2087,11 @@ func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Log10(number))
+ return newNumberFormulaArg(math.Log10(number.Number))
}
// minor function implement a minor of a matrix A is the determinant of some
@@ -2153,24 +2172,22 @@ func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
}
- var number, divisor float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ divisor := argsList.Back().Value.(formulaArg).ToNumber()
+ if divisor.Type == ArgError {
+ return divisor
}
- if divisor == 0 {
+ if divisor.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
}
- trunc, rem := math.Modf(number / divisor)
+ trunc, rem := math.Modf(number.Number / divisor.Number)
if rem < 0 {
trunc--
}
- return newNumberFormulaArg(number - divisor*trunc)
+ return newNumberFormulaArg(number.Number - divisor.Number*trunc)
}
// MROUND function rounds a supplied number up or down to the nearest multiple
@@ -2182,28 +2199,26 @@ func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
}
- var number, multiple float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ n := argsList.Front().Value.(formulaArg).ToNumber()
+ if n.Type == ArgError {
+ return n
}
- multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ multiple := argsList.Back().Value.(formulaArg).ToNumber()
+ if multiple.Type == ArgError {
+ return multiple
}
- if multiple == 0 {
+ if multiple.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- if multiple < 0 && number > 0 ||
- multiple > 0 && number < 0 {
+ if multiple.Number < 0 && n.Number > 0 ||
+ multiple.Number > 0 && n.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- number, res := math.Modf(number / multiple)
+ number, res := math.Modf(n.Number / multiple.Number)
if math.Trunc(res+0.5) > 0 {
number++
}
- return newNumberFormulaArg(number * multiple)
+ return newNumberFormulaArg(number * multiple.Number)
}
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
@@ -2217,11 +2232,18 @@ func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
var err error
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ switch token.Type {
+ case ArgString:
+ if token.String == "" {
+ continue
+ }
+ if val, err = strconv.ParseFloat(token.String, 64); err != nil {
+ return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ }
+ break
+ case ArgNumber:
+ val = token.Number
+ break
}
num += val
denom *= fact(val)
@@ -2238,18 +2260,18 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
}
- dimension, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ dimension := argsList.Back().Value.(formulaArg).ToNumber()
+ if dimension.Type == ArgError {
+ return dimension
}
- matrix := make([][]formulaArg, 0, dimension)
- for i := 0; i < dimension; i++ {
- row := make([]formulaArg, dimension)
- for j := 0; j < dimension; j++ {
+ matrix := make([][]formulaArg, 0, int(dimension.Number))
+ for i := 0; i < int(dimension.Number); i++ {
+ row := make([]formulaArg, int(dimension.Number))
+ for j := 0; j < int(dimension.Number); j++ {
if i == j {
- row[j] = newNumberFormulaArg(float64(1.0))
+ row[j] = newNumberFormulaArg(1.0)
} else {
- row[j] = newNumberFormulaArg(float64(0.0))
+ row[j] = newNumberFormulaArg(0.0)
}
}
matrix = append(matrix, row)
@@ -2267,15 +2289,15 @@ func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Back().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- if number == 0 {
- return newStringFormulaArg("1")
+ if number.Number == 0 {
+ return newNumberFormulaArg(1)
}
- sign := math.Signbit(number)
- m, frac := math.Modf((number - 1) / 2)
+ sign := math.Signbit(number.Number)
+ m, frac := math.Modf((number.Number - 1) / 2)
val := m*2 + 1
if frac != 0 {
if !sign {
@@ -2308,23 +2330,21 @@ func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
}
- var x, y float64
- var err error
- x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ x := argsList.Front().Value.(formulaArg).ToNumber()
+ if x.Type == ArgError {
+ return x
}
- y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ y := argsList.Back().Value.(formulaArg).ToNumber()
+ if y.Type == ArgError {
+ return y
}
- if x == 0 && y == 0 {
+ if x.Number == 0 && y.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- if x == 0 && y < 0 {
+ if x.Number == 0 && y.Number < 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(math.Pow(x, y))
+ return newNumberFormulaArg(math.Pow(x.Number, y.Number))
}
// PRODUCT function returns the product (multiplication) of a supplied set of
@@ -2348,6 +2368,10 @@ func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
product = product * val
+ break
+ case ArgNumber:
+ product = product * token.Number
+ break
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
@@ -2374,20 +2398,18 @@ func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
}
- var x, y float64
- var err error
- x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ x := argsList.Front().Value.(formulaArg).ToNumber()
+ if x.Type == ArgError {
+ return x
}
- y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ y := argsList.Back().Value.(formulaArg).ToNumber()
+ if y.Type == ArgError {
+ return y
}
- if y == 0 {
+ if y.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
- return newNumberFormulaArg(math.Trunc(x / y))
+ return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
}
// RADIANS function converts radians into degrees. The syntax of the function is:
@@ -2398,11 +2420,11 @@ func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
}
- angle, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ angle := argsList.Front().Value.(formulaArg).ToNumber()
+ if angle.Type == ArgError {
+ return angle
}
- return newNumberFormulaArg(math.Pi / 180.0 * angle)
+ return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
}
// RAND function generates a random real number between 0 and 1. The syntax of
@@ -2426,20 +2448,18 @@ func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
}
- var bottom, top int64
- var err error
- bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ bottom := argsList.Front().Value.(formulaArg).ToNumber()
+ if bottom.Type == ArgError {
+ return bottom
}
- top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ top := argsList.Back().Value.(formulaArg).ToNumber()
+ if top.Type == ArgError {
+ return top
}
- if top < bottom {
+ if top.Number < bottom.Number {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1) + bottom))
+ return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
}
// romanNumerals defined a numeral system that originated in ancient Rome and
@@ -2469,17 +2489,17 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
}
- var number float64
var form int
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
if argsList.Len() > 1 {
- if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ f := argsList.Back().Value.(formulaArg).ToNumber()
+ if f.Type == ArgError {
+ return f
}
+ form = int(f.Number)
if form < 0 {
form = 0
} else if form > 4 {
@@ -2497,7 +2517,7 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
case 4:
decimalTable = romanTable[4]
}
- val := math.Trunc(number)
+ val := math.Trunc(number.Number)
buf := bytes.Buffer{}
for _, r := range decimalTable {
for val >= r.n {
@@ -2553,17 +2573,15 @@ func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
}
- var number, digits float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ digits := argsList.Back().Value.(formulaArg).ToNumber()
+ if digits.Type == ArgError {
+ return digits
}
- return newNumberFormulaArg(fn.round(number, digits, closest))
+ return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
}
// ROUNDDOWN function rounds a supplied number down towards zero, to a
@@ -2575,17 +2593,15 @@ func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
}
- var number, digits float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ digits := argsList.Back().Value.(formulaArg).ToNumber()
+ if digits.Type == ArgError {
+ return digits
}
- return newNumberFormulaArg(fn.round(number, digits, down))
+ return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
}
// ROUNDUP function rounds a supplied number up, away from zero, to a
@@ -2597,17 +2613,15 @@ func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
}
- var number, digits float64
- var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ digits := argsList.Back().Value.(formulaArg).ToNumber()
+ if digits.Type == ArgError {
+ return digits
}
- return newNumberFormulaArg(fn.round(number, digits, up))
+ return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
}
// SEC function calculates the secant of a given angle. The syntax of the
@@ -2619,11 +2633,11 @@ func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Cos(number))
+ return newNumberFormulaArg(math.Cos(number.Number))
}
// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
@@ -2635,11 +2649,11 @@ func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(1 / math.Cosh(number))
+ return newNumberFormulaArg(1 / math.Cosh(number.Number))
}
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
@@ -2653,17 +2667,17 @@ func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
}
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ val := argsList.Front().Value.(formulaArg).ToNumber()
+ if val.Type == ArgError {
+ return val
}
- if val < 0 {
- return newStringFormulaArg("-1")
+ if val.Number < 0 {
+ return newNumberFormulaArg(-1)
}
- if val > 0 {
- return newStringFormulaArg("1")
+ if val.Number > 0 {
+ return newNumberFormulaArg(1)
}
- return newStringFormulaArg("0")
+ return newNumberFormulaArg(0)
}
// SIN function calculates the sine of a given angle. The syntax of the
@@ -2675,11 +2689,11 @@ func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Sin(number))
+ return newNumberFormulaArg(math.Sin(number.Number))
}
// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
@@ -2691,11 +2705,11 @@ func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Sinh(number))
+ return newNumberFormulaArg(math.Sinh(number.Number))
}
// SQRT function calculates the positive square root of a supplied number. The
@@ -2707,19 +2721,14 @@ func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
}
- var res float64
- var value = argsList.Front().Value.(formulaArg).String
- if value == "" {
- return newStringFormulaArg("0")
+ value := argsList.Front().Value.(formulaArg).ToNumber()
+ if value.Type == ArgError {
+ return value
}
- res, err := strconv.ParseFloat(value, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if res < 0 {
+ if value.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
- return newNumberFormulaArg(math.Sqrt(res))
+ return newNumberFormulaArg(math.Sqrt(value.Number))
}
// SQRTPI function returns the square root of a supplied number multiplied by
@@ -2731,11 +2740,11 @@ func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Sqrt(number * math.Pi))
+ return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
}
// SUM function adds together a supplied set of numbers and returns the sum of
@@ -2844,6 +2853,10 @@ func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
sq += val * val
+ break
+ case ArgNumber:
+ sq += token.Number
+ break
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
@@ -2870,11 +2883,11 @@ func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Tan(number))
+ return newNumberFormulaArg(math.Tan(number.Number))
}
// TANH function calculates the hyperbolic tangent (tanh) of a supplied
@@ -2886,11 +2899,11 @@ func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
}
- number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
- return newNumberFormulaArg(math.Tanh(number))
+ return newNumberFormulaArg(math.Tanh(number.Number))
}
// TRUNC function truncates a supplied number to a specified number of decimal
@@ -2902,29 +2915,31 @@ func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
}
- var number, digits, adjust, rtrim float64
+ var digits, adjust, rtrim float64
var err error
- number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ number := argsList.Front().Value.(formulaArg).ToNumber()
+ if number.Type == ArgError {
+ return number
}
if argsList.Len() > 1 {
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
+ d := argsList.Back().Value.(formulaArg).ToNumber()
+ if d.Type == ArgError {
+ return d
}
+ digits = d.Number
digits = math.Floor(digits)
}
adjust = math.Pow(10, digits)
- x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
+ x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
if x != 0 {
if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
}
if (digits > 0) && (rtrim < adjust/10) {
- return newNumberFormulaArg(number)
+ return newNumberFormulaArg(number.Number)
}
- return newNumberFormulaArg(float64(int(number*adjust)) / adjust)
+ return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
}
// Statistical functions
@@ -2976,6 +2991,10 @@ func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
values = append(values, digits)
+ break
+ case ArgNumber:
+ values = append(values, arg.Number)
+ break
case ArgMatrix:
for _, row := range arg.Matrix {
for _, value := range row {