From 8932a0a0c34b67c5a1c1b2ffa757885def4cc5d4 Mon Sep 17 00:00:00 2001 From: xuri Date: Sat, 30 Oct 2021 14:27:14 +0800 Subject: ref #65: new formula functions PV, RANK and RANK.EQ --- calc.go | 105 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 105 insertions(+) (limited to 'calc.go') diff --git a/calc.go b/calc.go index 8b13cae..879a0ad 100644 --- a/calc.go +++ b/calc.go @@ -498,12 +498,15 @@ type formulaFuncs struct { // PRICEDISC // PRODUCT // PROPER +// PV // QUARTILE // QUARTILE.INC // QUOTIENT // RADIANS // RAND // RANDBETWEEN +// RANK +// RANK.EQ // REPLACE // REPLACEB // REPT @@ -5700,6 +5703,63 @@ func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg { return fn.QUARTILE(argsList) } +// rank is an implementation of the formula functions RANK and RANK.EQ. +func (fn *formulaFuncs) rank(name string, argsList *list.List) formulaArg { + if argsList.Len() < 2 { + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name)) + } + if argsList.Len() > 3 { + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at most 3 arguments", name)) + } + num := argsList.Front().Value.(formulaArg).ToNumber() + if num.Type != ArgNumber { + return num + } + arr := []float64{} + for _, arg := range argsList.Front().Next().Value.(formulaArg).ToList() { + n := arg.ToNumber() + if n.Type == ArgNumber { + arr = append(arr, n.Number) + } + } + sort.Float64s(arr) + order := newNumberFormulaArg(0) + if argsList.Len() == 3 { + if order = argsList.Back().Value.(formulaArg).ToNumber(); order.Type != ArgNumber { + return order + } + } + if order.Number == 0 { + sort.Sort(sort.Reverse(sort.Float64Slice(arr))) + } + for idx, n := range arr { + if num.Number == n { + return newNumberFormulaArg(float64(idx + 1)) + } + } + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) +} + +// RANK.EQ function returns the statistical rank of a given value, within a +// supplied array of values. If there are duplicate values in the list, these +// are given the same rank. The syntax of the function is: +// +// RANK.EQ(number,ref,[order]) +// +func (fn *formulaFuncs) RANKdotEQ(argsList *list.List) formulaArg { + return fn.rank("RANK.EQ", argsList) +} + +// RANK function returns the statistical rank of a given value, within a +// supplied array of values. If there are duplicate values in the list, these +// are given the same rank. The syntax of the function is: +// +// RANK(number,ref,[order]) +// +func (fn *formulaFuncs) RANK(argsList *list.List) formulaArg { + return fn.rank("RANK", argsList) +} + // SKEW function calculates the skewness of the distribution of a supplied set // of values. The syntax of the function is: // @@ -9863,6 +9923,51 @@ func (fn *formulaFuncs) PRICEDISC(argsList *list.List) formulaArg { return newNumberFormulaArg(redemption.Number * (1 - discount.Number*frac.Number)) } +// PV function calculates the Present Value of an investment, based on a +// series of future payments. The syntax of the function is: +// +// PV(rate,nper,pmt,[fv],[type]) +// +func (fn *formulaFuncs) PV(argsList *list.List) formulaArg { + if argsList.Len() < 3 { + return newErrorFormulaArg(formulaErrorVALUE, "PV requires at least 3 arguments") + } + if argsList.Len() > 5 { + return newErrorFormulaArg(formulaErrorVALUE, "PV allows at most 5 arguments") + } + rate := argsList.Front().Value.(formulaArg).ToNumber() + if rate.Type != ArgNumber { + return rate + } + nper := argsList.Front().Next().Value.(formulaArg).ToNumber() + if nper.Type != ArgNumber { + return nper + } + pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() + if pmt.Type != ArgNumber { + return pmt + } + fv := newNumberFormulaArg(0) + if argsList.Len() >= 4 { + if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber { + return fv + } + } + t := newNumberFormulaArg(0) + if argsList.Len() == 5 { + if t = argsList.Back().Value.(formulaArg).ToNumber(); t.Type != ArgNumber { + return t + } + if t.Number != 0 { + t.Number = 1 + } + } + if rate.Number == 0 { + return newNumberFormulaArg(-pmt.Number*nper.Number - fv.Number) + } + return newNumberFormulaArg((((1-math.Pow(1+rate.Number, nper.Number))/rate.Number)*pmt.Number*(1+rate.Number*t.Number) - fv.Number) / math.Pow(1+rate.Number, nper.Number)) +} + // RRI function calculates the equivalent interest rate for an investment with // specified present value, future value and duration. The syntax of the // function is: -- cgit v1.2.1