1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
#!/usr/bin/env python3
# Delete `import ray` and initting if not using modin. #
# TODO: add try: except: around the `import ray`, `import modin.pandas`.
import ray
import logging
import os
os.environ["__MODIN_AUTOIMPORT_PANDAS__"] = "1"
ray.init(log_to_driver=False, logging_level=logging.FATAL)
import modin.pandas as pd
from typing import List
from enum import Enum
from dataclasses import dataclass
from utilfn import *
import time
def query_split(df: pd.DataFrame) -> List[str]:
ret: List[str] = []
header = df.iloc[:1]
for idx, val in enumerate(header):
print(f"{idx + 1}: {val}")
sel = input("Select the fields to split on, delimited by commas: ")
if sel.lower() in [ "quit", "exit" ]:
print("Quitting...")
quit()
sellist = sel.strip()\
.replace(",", ";")\
.replace(".", ";")\
.replace("\t", ";")\
.replace(" ", ";")\
.split(";")
for idx, val in enumerate(header):
if str(idx + 1) in sellist:
# It's selected, so add it.
ret.append(val)
print(f"Selections are: {ret}")
return ret
def make_valid_fn(fn: str) -> str:
# Possibly add spaces into this as well?
return fn.replace(":", "-") \
.replace(";", "-")\
.replace("/", "-")\
.replace("\\", "-")
def split(filename: str, df: pd.DataFrame, splits: List[str],
out_filetype: Filetype,
update_user: bool = True,
show_timings: bool = True):
# filename: the output filename.
# df: the input dataframe
# splits: the columns to split on.
# out_filetype: either Excel or Csv format to save in.
print_options = PrintOptions(update_user, show_timings)
### Checks ###
if len(splits) == 0:
print("No values selected to split on! Quitting...")
quit()
if filename == "":
print("No filename provided! Quitting...")
quit()
parents: List[Tuple[str, pd.DataFrame]] = [(make_valid_fn(filename), df)]
children = []
### Split the file into individual dataframes for each split ###
begin_calc_split_time = time.time()
for outer_index, entry in enumerate(splits):
values = df[entry].unique().tolist()
for inner_index, (name, parent) in enumerate(parents):
if update_user:
print_noendl(f"Calculating splits for ({outer_index + 1} of {len(splits)}) {entry}: entry {inner_index} of {len(parents)} ")
for val in values:
# For each value which is different, create the new index and
# add to children - with each iteration, the children become
# the next parents.
key = f'{entry}'
view = parent[parent[key] == val]
children.append((f'{name} - {val}', view))
if update_user:
reprint_noendl('')
parents = children
children = []
cond_print(print_options, "Calculating splits - done!", f"Took {delta_now(begin_calc_split_time)}s.", suffix = (' ' * 79) + '\n')
### Save all the dataframes ###
time_begin_all_saving = time.time()
for i, (name, v) in enumerate(parents):
name = make_valid_fn(name)
if update_user:
print_noendl(f"({i}/{len(parents)}): Saving {name}.xlsx... ")
time_begin_save = time.time()
save_df(v, out_filetype, name)
cond_print(print_options, f"saved", f'in {delta_now(time_begin_save)}s', suffix=".\n")
cond_print(print_options, "", f"Took {delta_now(time_begin_all_saving)}s to save all files.\n")
def main():
reply = ask_open_file()
df = reply.df
print(f"Dataframe has {len(df)} rows and {len(df.iloc[0])} columns.")
out = input("Enter the name of the output file (w/o extension): ")
ft = ask_excel_or_csv()
splits = query_split(df)
split(out, df, splits, ft)
if __name__ == "__main__":
main()
|